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ABSTRACT  

The necessity for real-time condition assessment of operational full-scale systems is nowadays 

progressively accentuated with the decreased or indeterminate reliability of existing infrastructure, as 

well as the continuous utilization of new materials for design of lighter, albeit more productive 

structures. Structural Health Monitoring (SHM)-based diagnosis holds considerable potential for 

tackling the uncertainties associated to the customarily exploited simulation-based approaches, and as 

a result, can facilitate long-term, automated and even online assessment of in-service structures. 

The growing needs and rising trends for energy savings and recycling have placed Wind Turbines 

(WTs) among those infrastructures that bear critical importance. Unlike conventional structures, WTs 

are characterized by temporal variability. We propose a diagnostic framework able to describe the 

variability of the monitored WT system, in this way reaching beyond the applicability margins of the 

traditionally utilized operational modal analysis. The novel approach combines the Smoothness Priors 

Time Varying Autoregressive Moving Average (SP-TARMA) method for modeling the non-stationary 

structural response, and a Polynomial Chaos Expansion (PCE) probabilistic model for modeling the 

propagation of response uncertainty.  

The computational tool is applied on long-term data, collected from an active sensing system installed 

for four years on a real operating WT structure located in Dortmund, Germany. The long-term 

tracking of the obtained PCE-SPTARMA Diagnostic Indicator (DI) is further assessed by means of a 

statistical analysis. The results demonstrate that the proposed treatment yields a DI sensitive to 

unfamiliar fluctuations in measured environmental and operational parameters. The obtained data-

driven model verifies the future prospective of the strategy for development of an automated SHM 

diagnostic tool capable of separating benign Environmental and Operational Parameters (EOP) 

fluctuations from pattern alterations due to actual structural damage.  
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1. INTRODUCTION 

The latest technological progress has created solid grounds for widespread application of various 

sensing techniques and acquisition systems on actual full-scale structures, which in turn accentuated 

the favorable outcomes of data-aided assessment of operational engineering structures. Continuous 

monitoring strategies facilitate the utilization of data-based tools, often characterized with a more 

objective and flexible approach in dealing with the omnipresent sources of uncertainty and variability 

characterizing real systems and environment.  

Data-based schemes or hybrid analysis approaches (data/finite element model) become particularly 

valuable for infrastructures that bear critical importance in society. In this context, recent trends for 

energy conservation have placed the focus on WTs. Although historically linked to the very first 

conundrums of full-scale SHM attempts, as structures characterized with complex dynamics and 

alternating operating nature WTs persist to challenge experts in the field. Namely, as a result of their 

time-varying dynamic behavior WTs are resilient to traditionally applied Operational Modal Analysis 

(OMA)-based methods which are limited to implementation with time invariant systems [1]-[2], i.e. 

parked or idling condition of the structure, mode-by-mode or case-by-case investigation [3]. On the 

other hand, the identified EOP-born variations in structural responses, known to mimic real damage 

states of the structure, triggered the emergence of strategies which rely on elimination, pattern 

identification, or integration of environmental factors [8]-[11] from/with obtained structural 

performance indicators.  

The workings of the PCE-SPTARMA data-driven tool, previously tested by the authoring team on two 

operating WT structures [11], are herein further explored by expanding the validation periods of 

monitored data. Whereas the twenty one-month long implementation on a real operating WT structure 

confirms the robustness of the strategy, fusion of the proposed strategy with a novelty detection 

algorithm and probability distribution divergence measure demonstrates the high potential for further 

automated structural health assessment.  

2. CONCEPT AND THEORY BACKGROUND 

In an operating mode WTs experience intense loading, non-stationary response and a significant 

dependence on their working conditions (wind, waves, temperature), eventually suffering signs of 

fatigue and deterioration. In this context, the fundamental concept of the proposed strategy revolves 

around two separate time-window scales: i) short-term time framework and ii) long-term time 

framework. The uniqueness of the approach lies exactly in this “binocular” visualization of the 

problem, which eventually enables addressing both behavioral signatures associated to collected WT 

response data, i.e., (short-term) non-stationarity and long-term temporal variability, Fig. 1.  

The proposed PCE-SPTARMA tool is a multicomponent algorithm adept in capturing the short and 

long-term variability of the observed system. Through tracking of measured structural responses the 

tool provides a link between output-only vibration response data and measured EOPs. More precisely, 

the fluctuations that are typical for the inherent (short-term) system dynamics are modeled by means 

of a parametric SP-TARMA method (Step 1). Identified structural performance indicators, 

corresponding to short-term modeled responses, are then integrated into a PCE tool. The PCE 

probabilistic modeling approach connects the variability of the structural response to the randomness 

of measured EOPs (Step 2). Finally, the statistical model (Step 3) enables the long-term tracking of a 

selected PCE-SPTARMA descriptive indicator and facilitates timely reaction to any identified changes 

in patterns or distributions of the selected output indicators. Comprehensive overviews of commonly 

applied statistical concepts in SHM can be found in [12]-[14].  

The separate computational methods are further summarized and presented with a concise theoretical 

overview. The reader is guided to further appropriate references for more detailed information on the 

theoretical background.  

 

 



  

Fig. 1.  Conceptual model of the SHM strategy and applied methods 

2.1. Modeling non-stationarity (Step 1) 

The nonstationary dynamics typical for an operating WT structure can be successfully tracked via the 

compact parametric formulation provided by the SP-TARMA models [15]. A full SP-TARMA model 

is completely described by an assemblage of three equations, one representing the modeled signal 

(system response), and two stochastic difference equations governing the time evolution of the 

unknown AR and MA parameters of the model. Thus, an adequate modelling of a measured 

nonstationary signal is ensured by proper selection of three user-defined parameters, i.e. the AR/MA 

order n, the ratio of the residual variances v, and the order of the stochastic difference equations κ [16]. 

Statistical approaches such as minimization of the AIC (Akaike information criterion) or the BIC 

(Bayesian information criterion) improve the optimal selection of these values without overfitting the 

modeled signal. Finally, for a selected model M(n, v, κ) the SP-TARMA model parameters are 

obtained via the Kalman Filter scheme combined with an Extended Least Squares-like algorithm [15]. 

2.2. Modelling uncertainty (Step 2) 

The PCE tool is an uncertainty quantification method, which enables the relationship between outputs 

(structural response performance indicators) and inputs (environmental and operational loads) to the 

system. A PCE model can be described by a mathematical expansion of a random system output 

variable on multivariate polynomial chaos basis functions [11]. Spectral representations, such as the 

PCE method, rely on several regularity requirements, namely finite variance of the outputs, 

orthonormality of the polynomial basis, and statistical independence of the input variables [17]. 

Hence, the polynomial chaos basis functions orthonormal with respect to the probability space of the 

system’s random inputs have to be properly selected to ensure the necessary orthogonality 

relationship. Furthermore, the statistical independence of input data needs to be properly verified and 

possibly addressed via computational approaches capable of extracting independent (latent) variables 

from observed data, such as the Independent Component Analysis (ICA) tool [18]. Then for a selected 

family of polynomial functions and maximum polynomial order P, the solution of the deterministic 

unknown parameters of a truncated PCE model are estimated via the least squares approach based on 

minimization of the sum of the squared residuals between true (observed) and modeled (predicted) 

system outputs [17]. 



2.3. Statistical modelling (Step 3) 

The statistical modeling within the proposed data-driven framework verifies the sensitivity of the 

obtained PCE-SPTARMA model to novel fluctuations in measured EOPs. The utilized algorithm is 

based on Control chart analysis and the Kullback–Leibler divergence metric applied on the obtained 

PCE-SPTARMA residual (DI). The latter measures the difference between a reference (training set) 

probability distribution of the obtained DI, and distribution that corresponds to new estimates of the DI 

(validation set).  

3. APPLICATION CASE STUDY 

The practical utilization of the described SHM strategy is presented with a case study of a 0.5MW WT 

erected in 1997, located in the vicinity of Dortmund, Germany, Fig. 2. The continuous measurement of 

acceleration data is recorded by triaxial accelerometers (PCB-3713D1FD3G MEMS sensors) installed 

at five different height positions of the WT structure.  

The vibration data is supported with SCADA data records, both sampled with the frequency of 100 

Hz. The presented results correspond to almost two complete years of continuously monitored data 

(January 2012 to September 2013). The last three months of year 2013 are disregarded from the 

assessment as a result of missing temperature data from various sensor malfunctions.  

In order to illustrate the time variable dynamics of the presented WT case study, first the stationary 

ARMA method (prediction error method) is utilized for estimating the dynamic properties of the 

structure for selected data records corresponding to parked conditions, during an emergency stop test 

event of the structure. In Fig. 3 the ARMA based Stabilization plot is presented, together with results 

of a stochastic subspace identification method, in the background. Furthermore, the plotted 

spectrogram (Short Time Fourier Transform; Hamming data window; NFFT = 512; overlap 98%), 

which is provided on the right subplot of the same figure, clearly demonstrates the stationarity of 

natural frequencies within the explored time frame. 

3.1.  Short-term framework  

Acceleration records from a selected sensor location (marked at Fig. 2), corresponding to the working 

conditions of the structure, were low-pass filtered and down-sampled to 12.5 Hz, with a cut-off 

frequency at 6 Hz. Subsequently, 10-min long preprocessed data sets were implemented within the 

short-term framework. The tuning of an appropriate SP-TARMA model to actual 10-min long signals 

is a crucial point of the short-term modeling phase. Towards this end, plots of the AIC and BIC for 
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Fig. 2. Schematic overview of measured data (left), WT structure characteristics (right) 



model order selection are significant indicative tools that facilitate the fitting process of the user-

defined parameters of the SP-TARMA model (i.e. the model order n, the smoothness constraint order 

κ and the residual variance ratio ν). A detailed inspection of a selection of response data sets in 

conjunction with their estimated statistical criterion plots revealed an optimal fitting with the 

parameter values equal to n=18, κ=1, ν =0.0001. For a graphic comparison, Fig. 3 presents a fitted and 

an over fitted 10-min long data set signal with ν =0.0001 and ν =0.001, respectively. Further 

discussion and graphical outputs on the SP-TARMA tuning process for the actual WT structure can be 

found in [11]. 

 

3.2.  Long-term framework  

Measured data corresponding to operational and environmental parameters was organized as 10-min 

averages and further processed to be utilized as input variables into the long-term framework. More 

precisely, five SCADA parameters (wind velocity, RPM of the rotor, power production, yaw angle, 

 
 

Fig. 3.  Dynamics of the parked WT. Left: Stabilization plot for the stationary ARMA and SSI 

methods (model orders from 2 to 50). Right: Spectrogram and ARMA(18,18) estimates 

  

Fig. 4. SP-TARMA estimates (spectrogram in the background): fitted (left) and overfitted (right) 



and shaft temperature) were transformed to independent variables via the ICA algorithm. In order to 

preserve all the existing information the number of ICA latent variables was kept same as the 

maximum number of available EOP. For the purpose of satisfying the second PCE prerequisite, the 

ICA estimates are further transformed into uniformly distributed variables via use of the non-

parametrically estimated cumulative distribution functions. Hence, in accordance with the uniform 

PDFs of the input data, the Legendre polynomials are selected as the PC functional basis. The standard 

deviation (std) of the SP-TARMA residuals for the 10 minute intervals, analysed as part of the short-

term framework, is selected as the PCE output parameter.  

The final step is statistical analysis of a selected DI. In this case the residual of the obtained PCE 

model is selected as a DI. The results from the Kullback–Leibler divergence, applied daily on the 

obtained DI, are presented in Fig. 5. The sensitivity of the DI values to unfamiliar EOPs fluctuations is 

tested for two, four and twelve-month training periods. The red dots, marked at the plot are the first 

alarming values delivered by the tested statistical model. The second test is performed with Control 

chart analysis on the selected DI. Figs. 6 to 8 illustrate the performance of the charts for the three 

different training lengths.  

 

Fig. 5.  Kullback–Leibler divergence applied on the obtained DI with cumulative assessment of 

one DI value per day, and tested for 2, 4, 12 months of training. 

For further verification of the performance of the applied statistical metrics (Control charts and 

Kullback–Leibler divergence) , the input data time histories are analyzed by means of outlier analysis 

via the commonly utilized univariate discordancy measure given in [19]. The method identifies 

samples from a testing set which have values beyond a predefined limit. These are interpreted as 

novelties. In this context, the definition of thresholds is vital part of the process. An adaptive method 

that takes into account the actual empirical chi-square distribution function of the estimated distances 

(instead of a fixed quantile) is herein applied [20].  

In Fig. 6, for a two-month training period, the validation set of the estimated DI and statistical outlier 

analysis of the input data time histories illustrate that index values exceeding the ± 3std thresholds 

(99.7% confidence intervals calculated for the fitted Gaussian distribution of the estimation set of PCE 

residuals) can be linked to novel data ranges of the measured influencing agents, more precisely 



temperature and RPM values between months March and November year 2012, as well as April and 

September in year 2013.  

 

Fig. 6.  Two-month training set. Identified novel data (red points) within time history of 10-min mean 

values of measured SCADA and Control chart of the Model residual.  

Further increase of the training period (Figs. 7 to 8) results in decrease in the outlier percentages 

(SCADA variables with zero percent are not included in the plots) and correspondingly the DI values 

become significantly reduced. In the case of the twelve-month period of training, the outlier 

percentages drop below 0.2% and the DI distribution pattern of the testing set is evidently improved, 

with substantially less points above the threshold values. Furthermore, it is clearly demonstrated that 

the sensitivity of the applied Kullback–Leibler divergence to new data ranges of measured EOPs 

agrees well with the detected outliers within SCADA variables (Figs. 6-8). 



 

Fig. 7.  Four-month training set. Identified novel data (red points) within time history of 10-min mean 

values of measured SCADA and Control chart of the DI. 

 

 

Fig. 8.  Twelve-month training set. Identified novel data (red points) within time history of 10-min 

mean values of measured SCADA and Control chart of the DI. 



4. CONCLUSIONS 

The adoption of automated SHM identification tools capable of unprejudiced diagnosis of in-service 

structures gradually becomes a necessity. In this context, as result of today’s rising trends of energy 

management, wind turbines reached the forefront of significant infrastructures that demand 

instantaneous implementation. 

Measured ambient vibration accelerations of an actual operating WT tower in Dortmund (Germany) 

along with environmental and operational data were exploited within a multicomponent data-driven 

SHM framework. The proposed data-based strategy delivered a sensitive PCE-SPTARMA diagnostic 

indicator able to capture the non-stationary response and the long-term response variability of the 

actual operating WT structure for a monitoring period of twenty one months.  

The potential for further enhancements of the tool, towards real-time computing platform able to guide 

operators in the management of WT structures, is verified by outlier analysis of recorded SCADA 

data, as well as utilization of Control chart analysis and Kullback–Leibler divergence measure on the 

obtained indicator, for various training lengths. The sensitivity of the diagnostic indicator to scheduled 

changes in operating regimes and system fluctuations of the WT structure will be sought in a 

following step. 
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