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Abstract 
In order to capture the characteristic short- and long-term variability of Wind Turbine (WT) systems, it is 
crucial to incorporate the uncertainties related to various sources within mathematical prediction models. A 
data-driven framework able to link the temporal variability characterizing the system with the random 
evolution of environmental and operational parameters affecting the system is applied on long-term data 
collected from a real operating WT structure located in Dortmund, Germany. Particular focus placed us on 
the configuration of the input variable set, namely the evaluation of Polynomial Chaos Expansion (PCE) 
model estimates for the case of blind and reasoned source selection. The overviewed framework leads to 
effective reduction of the input set dimension facilitating the implementation of the proposed approach in 
an automated fashion. The developed data-driven tool proves robust in quantifying the uncertainty linked to 
the evolution of the structural dynamics throughout the structure’s operational envelope. 

1 Introduction 

Structural Health Monitoring (SHM) based solutions enable the extraction of comprehensive structural 
dynamics models of operating WT structures, under the condition that challenges attributed to stochasticity, 
complexity and limited knowledge of the conditions may be successfully bridged. The intrinsic stochasticity 
of operating WT structures may be largely attributed to limited knowledge of the inputs (alternating 
aerodynamics loads), the complexity related to the interacting subsystems of the structure (namely the 
rotating blades, moving yaw mechanism, and pitch angle changes), varying operational regimes and 
environmental factors, as well as the typical uncertainties related to complex and unique to the location soil-
structure interaction effects, modeling errors, incomplete and imperfect sensor data [1].  

The vast number of already developed and laboratory verified SHM assessment tools in the field, as well as 
recently emerged technologies have channeled the focus of the research community towards  holistic and 
automated SHM strategies, capable of early damage detection, diagnostics and prediction [2-5]. The process 
is further accelerated with WT infrastructure landing at the epicenter of Europe’s strategic resource 
planning. The high demands for productivity and reduced downtime standards put in place by today’s 

“renewable Europe” increase the necessity for efficient management of WTs [6]. 

However, when it comes to developing an efficient performance-based structural framework for an 
operating WT system the major difficulty is related to the benign structural changes linked to the changing 
operational regimes and varying environmental agents. Indeed, the time varying nature of WT structures 
and the misinterpretation of this variability oppose the effective operation of installed damage detection and 
intervention control systems by camouflaging the actual condition of the structure or by triggering false 
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alarms [7]. It then becomes evident that the commonly applied Operational Modal Analysis (OMA) set of 
methods, oriented towards linear time invariant systems, are no longer suitable and more refined schemes 
related to non-stationary systems need to be exploited [8, 9]. 

To alleviate the aforementioned conundrum, research studies in this field are generally following one of two 
streamlines: i) filtering out, or ii) merging environmental variables from/into models of measured vibration 
response. An approach based on filtering out the influence of environmental factors from estimated 
performance indices is applied in [10], where by analysis relying on the principal component analysis 
method the authors extract a structural health index of an operational 5 MW prototype wind turbine by 
removing temperature effects from selected natural frequency estimates.  

Spiridonakos & Chatzi in [11,12] introduced and successfully applied the second approach via 
implementation of a bi-component SHM framework for the purpose of damage detection of the benchmark 
SHM project of the Z24-bridge in Switzerland. In [13] Spiridonakos et al. combined this framework with 
time varying autoregressive models for the purpose of developing a time-sensitive tool capable of tracking 
long-term variability of an actual operating WT tower located in Lübbenau, Germany. In a recent study in 
[14] the method was verified on an operating WT system in Dortmund, Germany, and delivered a robust
model able to reproduce the one-month vibration response data with precision.

The main driver of the proposed strategy [12-14] relies on casting the problem in two separate temporal 
scales: a short-term time framework, which aims at accurately modeling the temporal variability 
charactering the system, while observing the structure as an isolated system, and a long-term time 
framework, which focuses on the tracking of the evolution of the variability in a longer time horizon, thus 
incorporating the effects of randomness of measured environmental data.  

Following this approach, the research study presented herein will focus on evaluating the long-term tracking 
performance when the operational and environmental parameters are based on a) blind robust selection, or 
b) reasoned controlled selection. By inspection of the computational efficiency and empirical errors of the
model estimates for both cases, the aspects of input data reduction and stability in case of automatized
utilization are addressed, thus demonstrating the potential for incorporation within a holistic SHM damage

detection framework, further extended via statistical hypothesis testing.

2 Framework description 

The applied SHM framework aims to deliver statistical models encoded with a unique structural 
performance genetic code, in which the effects of the varying operational and environmental conditions are 
encrypted. The proposed data-driven strategy is two-sided. Firstly, employment of a parametric system 
identification technique, namely Smoothness Priors Time Varying Autoregressive Moving Average (SP-
TARMA) model for the adequate capturing of the non-stationary short-term dynamics, in contrast to 
standard operational modal analysis methods adequate for structural responses closer to stationary. 
Secondly, adoption of a PCE probabilistic model for describing the uncertainty in the identified structural 
performance indicators originating from the stochasticity of operational and environmental data (Fig.1). 
This is achieved via projection of selected performance indicators, derived from the short-term dynamics 
(e.g. statistical moments of the SP-TARMA model residuals), onto the probability space of the influencing 
agents (wind loads, power, and temperature). 

Figure 1: A conceptual overview of the bi-component framework 
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The changing dynamics of operating WTs calls for time sensitive modeling tools, capable of tracking the 
evolution of the identified response features. SP-TARMA models allow for a compact and parameterized 
formulation of a non-stationary signal, efficiently tracking temporal variability. The SP-TARMA model 
may be completely described by  i) a model for the system response y[t] (Eq. 1), and ii) a model which 
“controls” the time evolution of the AR and MA (unknown) parameters of the first model (Eqs. 2 and 3), 
[15]: 

𝑦[𝑡] + ∑ 𝑎𝑖[𝑡] ∙ 𝑦[𝑡 − 𝑖] = 𝑒[𝑡] + ∑ 𝑐𝑖[𝑡] ∙ 𝑒[𝑡 − 𝑖], 

𝑛𝑐

𝑖=1

𝑛𝑎

𝑖=1

𝑒[𝑡] ∼ 𝑁𝐼𝐷(0, 𝜎𝑒
2[𝑡]) (1) 

2(1 ) [ ] [ ], [ ] ~ NID(0, [ ])
i i ai a a wB a t w t w t t   (2) 

2(1 ) [ ] [ ], [ ] ~ NID(0, [ ])
i i ci c c wB c t w t w t t   (3) 

where t designates discrete time (with 𝑖 = 1,2, … , 𝑁 ) of the observed nonstationary signal 𝑦[𝑡], 𝑒[𝑡] is the 
residual sequence (i.e., the unmodeled part of the signal, assumed to be normally identically distributed with 
zero mean and time-varying variance 𝑒[𝑡]~𝑁𝐼𝐷(0, 𝜎𝑒

2[𝑡]) ) and 𝑎𝑖[𝑡], 𝑐𝑖[𝑡]  designate the time-varying AR 
and MA parameters respectively, for an AR/MA order equal to n. 𝐵 is the backshift operator (𝐵𝑘𝑥[𝑡] =
𝑥[𝑡 − 𝑘]),  𝜅 designates the difference equation order, and 𝑤𝑖[𝑡] zero-mean, Gaussian sequences with time-
dependent variance, uncorrelated, mutually uncorrelated and also uncrosscorrelated with 𝑒[𝑡]. 

For a given set of values of the three user-defined parameters, i.e., the AR/MA order n, the ratio of the 
residual variances  𝜈 = 𝜎𝑤

2 [𝑡]/𝜎𝑒
2[𝑡], and the order of the stochastic difference equations κ, the model is 

fitted to the actual structural response. A tuning of the values (n, 𝜈, κ) , usually supported by statistical based 
“penalty” approaches, which hinder overfitting of the modeled signal [15], ensures a well-fitted model. The 
parameter estimation problem (Eqs. 1-3) is then solved via a Kalman Filter, aided by an Extended Least 
Squares-like algorithm in order to circumvent the nonlinear formulation, which is typical for the SP-
TARMA full case [13].   

For delivering the relationship between outputs (structural response estimates) and inputs (environmental 
and operational loads) of the system, the problem is further cast in the probability domain. For an assumed 
system S, the PCE generates a mathematical expansion of the model’s random output variable 𝑌 on 

multivariate polynomial chaos basis functions, appropriately related to the model’s random input data 

vector Ξ. 

More specifically, if we assume the system 𝑌 = 𝑆(Ξ)  is comprised of M random input parameters 
represented by independent random variables, e.g. measured wind velocities and temperature values, 
gathered in the random vector Ξ of prescribed joint Probability Density Function (PDF)  𝑝Ξ(𝜉), and the 
output variable is of finite variance, the PCE model assumes the form [16]: 

(4) 

where 𝜃𝑑 are unknown deterministic coefficients of projection, and 𝑑  is the vector of multi-indices of the 

multivariate polynomial basis with total maximum degree  for every single index  j. In 

this case, the number of terms in Eq. (4) is equal to: 

(5) 

where M designates the number of random variables and P denotes maximum basis degree. 

The multivariate PC basis functions 𝜑𝑑(Ξ) are constructed through tensor products of the corresponding 
univariate functions, chosen in accordance to the PDF of the random input variables  𝑝Ξ(𝜉), and thus 
straightforwardly associated to a well-known family of orthogonal polynomials [13]. Finally, the truncated 
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PCE model to the first p terms yields a finite parameter vector 𝜃𝑑 which  may be estimated by solving Eq. 
(4) in a least squares sense.

3 Application case: operating WT structure 

3.1 Description of the structure 

The SHM bi-component framework is presently applied on an actual WT structure. The monitored structure 
is a 65m high real WT under operation (Fig.2), located in the vicinity of Dortmund, Germany.  An extensive 
monitoring system has been installed to continuously record structural response (ambient vibration 
acceleration and displacement), environmental (wind velocity and direction, ambient and structural 
temperature) and operational (rotor velocity, power production, yaw angle and pitch angle changes) data of 
the WT structure for a period of four years, from October 2010 to October 2013. The output-only 
information is monitored by means of triaxial accelerometers (PCB-3713D1FD3G MEMS sensors). All 
aforementioned parameters are recorded at a sampling frequency of 100 Hz in hour-long data sets, during 
the complete monitoring period. A more detailed overview of the complete acquisition system can be found 
in [17]. 

Power 500 kW 

Height of the rotor center 65 m 

Length of blade (3 total) 19.13 m 

Rotor speed 18-36 rpm 

Blade material GRP 

Tower material steel 

Construction year 1997 

Figure 2: Schematic overview of measured data (left), WT structure characteristics (right) 

3.2. Short-term framework 

For the purposes of the SP-TARMA simulation, the one-hour acceleration time histories corresponding to 
normal operating conditions were low-pass filtered and down-sampled to 12.5 Hz (cutoff frequency at 6 Hz) 
and observed as 10-min long data sets [marked red in (Fig.2)]. The selected complete one-month period 
(June 2013) resulted in 4218 10-min long datasets. After a preliminary tuning phase the data sets were 
processed in an automated fashion within the short-term framework.  
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The tracking of the frequency evolution for a fitted SP-TARMA model (𝑛𝑎=18, 𝑛𝑐=18, κ=1, ν=0.0001) in 
contrast to an overfitted one (𝑛𝑎=18, 𝑛𝑐=18, κ=1, ν=0.001) is presented in Fig. 3. For comparison, 
spectrograms (Short Time Fourier Transform; Hamming data window; NFFT = 512; overlap 98%) are 

plotted in the background as well. 

Figure 3: SP-TARMA estimates (spectrogram in the background): fitted (left) and overfitted (right) 

3.3 Long-term framework 

Before utilizing the long-term framework the appropriate operational/environmental parameters have to be 

carefully selected. The theoretical prerequisite for building a PCE model is utilization of independent 

random input variables. However, in case of practical applications involving measured physical quantities, 

this is an uncommon scenario. In this context, for the current case study of the operating WT structure the 

PCE model performance is tested for the following two cases of input variables: i) directly employed 

SCADA parameters with weak linear correlation, ii) correlated SCADA parameters which are transformed 

before employment to independent variables with negligible correlation. 

3.3.1 Weakly correlated input data 

For the case of weakly correlated variables, the 10 minute averages of selected SCADA parameters, 
corresponding to the 4218 acceleration measurements (utilized for the SP-TARMA modeling), are plotted 
in Fig. 4 (left plot). In the right plot of the same figure the correlation plots for each pair of chosen input 
variables is presented.  The selected pairs are correlated with the highest negative Pearson correlation 
coefficient equal to -0.313. For the purpose of constructing the random vector Ξ of prescribed joint PDFs 
𝑝Ξ(𝜉), the input variables are further transformed into uniformly distributed variables via use of the non-
parametrically estimated cumulative distribution functions.  

As a last step, the SP-TARMA model output variables and the PDFs of the measured operational input data 
are fed into the PCE (long-term) framework. The standard deviation (std) of the SP-TARMA (18, 18, 1, 
0.0001) residuals for the 10 minute intervals are selected as the PCE output parameter. In accordance with 
the uniform PDFs of the input data, the Legendre polynomials are selected as the PC functional basis [13].  
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Figure 4: Left: Time-history plots of selected PCE input variables, Right: Scatter plots of selected PCE 
input variables with estimated Pearson correlation coefficient 

The std of the residuals for each dataset and the PCE model estimates for the maximum polynomial order 
set equal to five are plotted in Fig. 5. The total data sets, which correspond to the four weeks of 
measurements, are divided into a three-week estimation period and a one-week validation period. The PCE 
errors are plotted in the lower part of the figure, along with the corresponding 95% confidence intervals 
calculated for the fitted Gaussian distribution of the estimation set errors. It may be observed that the 
obtained PCE model is capable of simulating the std(e) output variable with very good accuracy, and the 
model residual falls within the 95% confidence intervals for both sets. 

Figure 5: Up: PCE output estimates for weakly correlated input variables, 
Bottom: PCE error with 95% confidence intervals 
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An advantage of the direct employment of uncorrelated (weakly correlated) input parameters is the 
possibility of straightforward calculation of the PCE-based Sobol’ indices. Sobol’ indices are obtained as a 

sum of squares of the PC coefficients and represent the fraction of the total variance of the model output 
that can be attributed to each input variable or combinations of variables [18]. In Fig. 6 the estimated Sobol’ 
first and second order indices for the estimation set (3163 data sets) of the PCE model (Fig. 5) are plotted. 
The highest index of 0.92 reveals that the variance of the modeled output parameter may mostly be attributed 
to the S1 index, directly related to the measured wind speed. Hence, the sensitivity analysis via post 
processing of estimated PC coefficients might contribute to reduction of the number of input data 
parameters, leading to higher computational efficiency (Fig. 7 right plot). In Fig. 7 (left plot) the PCE 
estimated std(e) for the case of three and one input parameter (wind speed) is presented. The number of PC 
terms for the case of one input variable reduces from p=56 to p=6, with a 2% difference in the estimated 
value of the R2 coefficient of determination, usually applied as an error estimator [19]. 

Figure 6: Sensitivity analysis: PCE-based Sobol’ indices [S1=0.92, S2=0.02, S3=0.009] 

Figure 7:  Left: PCE output estimates vs SP-TARMA std(e) for multivariate and univariate inputs; 
Right: Number of PC coefficients for three, two and one input variable for various PC orders 
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By further inspection of the R2 coefficient of determination for the PCE estimates (training and validation 
sets), for the case of the complete set, and then reducing to two and one input variables only, we further 
assess the performance of the PCE model for the actual case (Fig. 8). A R2 value close to 1 usually indicates 
a good accuracy of the model, whereas a R2 close to zero characterizes a poor representation of the model 
response [19].  

The plots for the estimation sets (full lines) of the three cases reveal the differences in achieved accuracy 
for the PC orders P=1 to 20. The case with two and one variable (red and blue filled line) have reached the 
maximum accuracy after the order P=12. The R2 value for the case of three input parameters (black dashed 
line) destabilizes rapidly for the validation sets after an order P=6, while the univariate and bivariate model 
yield an almost constant accuracy for higher PC orders. 

Figure 8:  R2 coefficient of determination for PCE model estimates for various PC orders and 
for multivariate and univariate inputs;  

3.3.2 Moderate to highly correlated input data 

The restriction in selecting a limited number of uncorrelated variables might result in omission of significant 
influences arising from other relevant input quantities. In this context, the PCE modeling is further tested 
for a broader set of correlated input variables.  

In Fig. 9 the 10 minute averages of the second set of selected SCADA parameters, corresponding to the 
same time slot, are plotted. The Pearson correlation coefficient matrix for the six variables is presented in 
Table 1. As a first step related to the case of correlated inputs, the data is transformed to independent 
variables, thus satisfying the theoretical PCE method requirement. To this end, the Independent Component 
Analysis (ICA), a method capable of extracting independent unobservable (latent) variables by exploiting 
higher order statistics (maximizing non-Gaussianity of the unobserved sources) is applied [20]. For the 
purpose of illustration, the FASTICA algorithm is herein utilized for estimating three ICA-based variables 
(for estimated 3 Eigen values of the input data covariance matrix). The ICA estimates are further 
transformed into uniformly distributed variables via use of the non-parametrically estimated cumulative 
distribution functions (as for the previous case).  
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Fig. 10 shows the scatter plots and univariate (marginal) histograms of the variables with highest values of 

correlation coefficients (marked red in Tab.1) from the original SCADA set (before ICA) as well as from 

the newly estimated three ICA-based latent variables. 

Figure 9: Time-history plots of measured SCADA variables – correlated set 

Figure 10: (Up) Scatter plots & marginal histograms of original input variables from Tab. 1 
(Bottom) Scatter plots & marginal histograms of ICA-based input variables  
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Power WS RPM Yaw Pitch Temp. 

Power 1 0.86 0.59 0.18 -0.56 0.06 

WS 0.86 1 0.70 0.23 -0.55 -0.03

RPM 0.59 0.70 1 0.21 -0.09 -0.40

Yaw 0.18 0.23 0.21 1 -0.26 -0.31

Pitch -0.56 -0.55 -0.09 -0.26 1 -0.65

Temp. 1 0.06 -0.03 -0.40 -0.31 -0.65 

Table 1:  Pearson correlation coefficient matrix 

The implementation of the ICA algorithm has a twofold advantage: i) blind (robust and prone to 
automatization) seeding of measured input data variables, and ii) possibility for reduction of the number of 
input variables by the in-built whitening of the observed data (via eigen-value decomposition of the 
covariance matrix) [20]. On the other hand, the method dismisses the physical meaning of the estimated 
variables, thus disabling meaningful sensitivity analysis on output data of the PCE model.  

The R2 error estimator for the PCE model (estimation set), under application of a different number of 
Independent Components (IC) and Eigen Values (EV) extracted from the six original SCADA inputs, is 
presented in Fig. 11. For comparison, in the same figure (rightmost plot) the R2 values for the Uncorrelated 
case of input Variables (UV) are plotted as well. The same graphs for the validation set are plotted in Fig. 
12. An additional important criterion, particularly in the case of handling of a large database, is
computational efficiency. Fig. 13 summarizes the relative computational time for the PCE model estimation
in the case of a varying number of input parameters. In order to deliver an optimal PCE model performance
for the actual case, the configuration of the PCE input variable set may be selected based on the criteria
plotted in Figs. 11-13.

Figure 11: (from left to right) R2 coefficient of determination for PCE outputs (estimation set) in case 
of: 5EV, 4EV,3EV,2EV, and the uncorrelated variables (UV) set  
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Figure 12: (from left to right) R2 coefficient of determination for PCE outputs (validation set) in case 
of: 5EV, 4EV,3EV,2EV, and the uncorrelated variables (UV) set  

Figure 13: Relative computational time for the PCE model estimation with different number of inputs 

For three different cases selected from Figs. 11-13 the PCE model estimates (Legendre polynomials, 
maximum polynomial order equal to five) are plotted in Fig. 14. The PCE model residuals fall within the 
95% confidence intervals for all of the three sets, however differences in relation to the previously discussed 
selection criteria may be clearly observed. 
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P=5 

IC=2 

EV=2 

P=5 

IC=3 

EV=5 

P=5 

IC=3 

EV=3 

Figure 14: Comparison of PCE model estimates for three selected cases from Figs.11-13 
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Conclusions 

Measured ambient vibration accelerations of an actual operating WT tower in Dortmund (Germany) along 
with environmental and operational data were exploited within a bi-component framework capable of 
delivering a robust time-sensitive model of the system response.  

Successful implementation of the strategy renders a stochastic model of the synergy between output-only 

vibration response data and measured operational variables. The results verify the high potential of the 
proposed method for automated condition assessment of large real-world structures, operating in a wide 
range of conditions.  

In this context, focus is herein shed on assessment of the performance of the long-term framework under 
different input dataset configurations, namely for blind and controlled selection of input parameters. The 
outcomes of the study demonstrate the effect on modeling errors, data reduction and computational 
efficiency, thus stressing the importance of proper selection criteria for an optimal autonomous tool, capable 
of tracking and diagnosing structural condition during the WT life-cycle. 
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