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Diabetes is one of today’s greatest global problems, and it is only becoming bigger. Constant measuring of blood glucose level is a
prerequisite for monitoring glucose blood level and establishing diabetes treatment procedures. The usual way of glucose level
measuring is by an invasive procedure that requires finger pricking with the lancet and might become painful and obeying,
especially if this becomes a daily routine. In this study, we analyze noninvasive glucose measurement approaches and present
several classification dimensions according to different criteria: size, invasiveness, analyzed media, sensing properties, applied
method, activation type, response delay, measurement duration, and access to results. We set the focus on using machine
learning and neural network methods and correlation with heart rate variability and electrocardiogram, as a new research and
development trend.

1. Introduction

A lot of problems arise when a human cannot control the
insulin level and thus process the glucose concentration in
the blood. This inability initiates diabetes [1], which is a
disease where the blood glucose level is high. In this case,
only a precise therapy and careful management can pre-
vent a buildup of sugars in the blood and intolerance to
glucose [2], increasing the risk of dangerous vascular com-
plications [3], such as coronary artery disease (leading to
heart attack) [4], peripheral vascular disease, kidney failure
or stroke, and neural complications (diabetic neuropathy)
[5], including peripheral neuropathy and autonomic nervous
system failure.

Recent studies show that there are 424.9 million diag-
nosed diabetic patients in the world and that the number is
expected to go up to 628.6 million by 2045 [6]. Glucose mea-

surement and diabetes treatment are very expensive; for
example, in the USA, the costs rose from $245M in 2012
[7] to $327M in 2017 [8]. To indicate the size of this problem,
diabetic patients present 6-7% of the total worldwide popula-
tion according to the International Diabetes Federation [9].

Furthermore, cardiovascular disease is closely linked to
diabetes. In fact, a study in the USA [10] concluded that
25% of diabetes patient costs are a consequence of cardiovas-
cular disease and 15% of costs of physician office visits are
related to cardiovascular disease. At the same time, diabetes
is responsible for more than a quarter of all cardiovascular
disease expenditure.

In addition, there is a high proportion of undiagnosed
diabetes mellitus globally, especially in developing coun-
tries, and Beagley et al. [11] conclude that 45.8% of diabe-
tes cases are undiagnosed and very often associated with
cardiovascular risk.
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Several studies analyze the history of development of glu-
cose measurement devices [12–14] and a summary of the
four generations of glucose monitoring [13] classified by
the used technology.

The produced medical devices have been evaluated from
the 1970s with the start of the first-generation glucose meters
that used reflectance technology and were made as heavy
devices requiring a relatively big amount of blood. Second-
generation devices used a drop of blood, and due to the avail-
able technology, they were made as smaller devices with
affordable prices that allowed personalized use.

Finger pricking as the main routine in these invasive
techniques is troublesome for diabetic patients because it
can lead to scarring, motivating the development of devices
that enable glucose measurement to be done cheaply and in
a noninvasive way. The third-generation devices started as
minimally invasive devices that include an array of small nee-
dles on the skin and enabled continuous glucose monitoring
(CGM) [15–17].

Recently, a new generation is rising on the horizon,
although it is still the king of an alternative, rather than an
actual application of these kinds of medical devices, due to
its current early stage of development. Nevertheless, we will
refer to it as the fourth-generation medical devices which
include noninvasive methods, providing an environment
for remote and real-time continuous monitoring. The nonin-
vasive methods do not invade the human body and are based
on various methods, including spectrometry or analysis of
other parameters correlated with the glucose level [18].

In this paper, we aim to present the available methods
and ongoing projects for noninvasive glucose measurement,
focusing on the use of machine learning (ML) and neural net-
work (NN) methods used in a lot of ongoing research to deal
with estimation methods of the glucose level.

The focus is also set to the possibility of using an ECG or
other methods that determine the HRV parameters for detec-
tion of the ability of a human to regulate the blood glucose
level with noninvasive methods. This is especially important
since the recent wearable ECG sensors successfully emerged
on the market, and ECG and HRV can be measured effi-
ciently by a noninvasive method that allows a possibility for
remote continuous real-time monitoring.

2. Classification of Noninvasive
Glucose Measurement

Glucose measurement is mostly classified by the level of inva-
siveness of the sensing devices, which are usually classified as
invasive (devices that are implanted in the patient’s body or
that invade the body to access a blood sample), minimally inva-
sive (devices that painlessly invade a very small part of the
patient’s body, such as skin to collect a minimal sample, like
a skin part, sweat, tear, and saliva), and noninvasive devices
(devices that do not invade the patient’s body) [12–14].

Noninvasive blood glucose monitoring methods are
based on measuring glucose concentration from its chemical,
thermal, electrical, or optical sensing properties [14, 19–22].
Some other sensing properties can also be exploited for mea-
surement since the human body shows different physiologi-

cal responses to changes in glucose, such as electric and
acoustic impedance, thermal conductivity, and electromag-
netic response.

Usual classification of noninvasive methods is based on
the used technology, although there are several authors that
classify methods based on the subject they analyze, such as
differentiation of media they target, including tissues (skin,
aqueous eye humor, oral mucosa, tongue, and tympanic
membrane) and fluids (sweat, urine, saliva, and tears) [21].

Each measurement system is specified by its size that
determines if it can be used in a specialized laboratory at
the healthcare institution or as a part of a smart home system
[23]. In addition, it can be a pocket-size measurement device,
such as those personal finger pricking devices or a wearable
device, which is worn on the patient’s body.

A specific method is used to process the sensed informa-
tion and produce intermediate results, including transdermal
and optical methods [20] or including nanotechnology [14].
The way the information obtained intermediate results which
are further processed may include a specific processing, such
as multivariate analysis, multiregression, or various artificial
methods, such as deep machine learning or neural networks,
which are described in more detail in this paper.

Glucose measurement can be applicable for continuous
and real-time monitoring or can provide only on-demand
activation of a single measurement, treated to be just a substi-
tute of the existing invasive methods. A measurement is
defined to be a single measurement if it is activated on
demand to access a sample and then to process a result, while
the continuous measurement systems continuously take
samples and calculate results.

In addition, if the results are displayed on to a single user,
the corresponding medical device is specified to be used in
self-monitoring only, and if the results can be shared over
the Internet to authorized users, the corresponding systems
are systems that allow shared authorized access to results.

Finally, the end results may be obtained immediately or
with a certain delay. If the delay is less than 2 minutes, they
become near real time, or if the delay is less than 30 sec, they
are treated as real time. For example, a blood analysis in the
lab may take more time, and these measurement systems
are specified to deliver postponed results. Not to be confused,
this delay is dependent on the measurement device and pro-
cessing capabilities, while the time delay needed for glucose
concentration to propagate to the analyzed media is usually
called lag.

To present a more comprehensive way and specify the
domain of noninvasive glucose measurement techniques,
we have introduced a methodology based on criteria, which
determine several dimensions of glucose measurement
devices, as illustrated in Figure 1. Each classification criterion
is displayed by a rounded rectangle, and each category within
a given criterion is presented by a sharped rectangle.

Glucose measurement systems can be classified accord-
ing to the following criteria:

(i) Size: describing the measurement device to be a
point-of-care system, home system, portable pocket
device, or wearable device
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(ii) Invasiveness: determined as an invasive, minimally
invasive, and noninvasive technique

(iii) Media: where the measurement is conducted,
including interstitial fluid, intermittent, and tissues

(iv) Sensing properties: analyzed by the medical device,
including chemical, impedance, thermal, electrical,
acoustic, or electromagnetic properties

(v) Method: defined by the used technology to analyze
the sensed information, such as transdermal, opti-
cal, and thermal conductivity and electromagnetic
response, autonomic dysfunction (HRV-based),
and nanotechnology

(vi) Processing: specified by the method used in pro-
cessing the result, which may include analog
(comparison result or indication from the sensed
information), mathematical and statistical methods
(multivariate analysis with calibration, multiregres-
sion, etc.), and artificial intelligence (machine learn-
ing, neural network methods, deep learning, etc.)

(vii) Activation type: determined by the way the mea-
surement is activated: either on-demand activation
or continuous measurement

(viii) Duration type: determined by the measurement
time: short term (less than 1 minute), medium term
(less than 1 hour), and long term (expressed in days)

(ix) Response delay: defined by the time required to
process the results, including real-time systems
(immediately or up to 30 sec), near real-time sys-
tems (up to 2 minutes), and postponed systems
(more than 1 hour)

(x) Access to results: specified by the access locality of
the results, including self-monitoring systems and
systems that use shared authorized remote access

3. Transdermal Noninvasive
Glucose Measurements

Transdermal methods use the following technologies:

(i) The reverse iontophoresis technique [24] accesses
the interstitial fluid by a low electric current across
the skin between two electrodes [25]. Sodium ions
cause convective flow carrying glucose molecules in
the opposite direction to that of normal medica-
ments (from the skin outward) [26]. Sensing is real-
ized by detecting the glucose oxidase. An FDA-
approved medical device is the GlucoWatch [27] tar-
geting a wrist skin, capable of measuring 78 readings
per wear (up to six per hour), after 2-hour calibra-
tion. It operates by a small current passing between
two skin surface electrodes that draw ions and
glucose-containing interstitial fluid to the surface
and into hydrogel pads incorporating a glucose oxi-
dase biosensor [28, 29]. According to our classifica-
tion, it is a wearable device, using a noninvasive
method to analyze interstitial fluid by sensing the
chemical and electrical properties by a transdermal
method with analog reading of local near real-time
results for medium-term continuous glucose mea-
surement. There are also other commercially unsuc-
cessful medical devices, including GluCal [22, 30]

(ii) Impedance spectroscopy measures the dielectric
properties of a tissue, by passing a small alternating
current across a tissue and measuring the impedance
frequency spectrum in the range of 100Hz−
100MHz [31], which is dependent on the glucose
interaction with red blood cells [32]. Several issues
including water content, temperature variation,
sweating, and motion [33] require frequent calibra-
tion and equilibration, which generates a lot of
implementation problems. Pendra is an FDA- and
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Figure 1: Classification of glucose measurements according to different criteria.
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CE-approved medical device [34], realized as a wrist
watch based on impedance spectroscopy, with sens-
ing conducted by an open resonant circuit, capable
of performing up to 4 measurements per minute.
However, it lacks a successful commercialization
due to calibration problems (the need to change
the tape after 24 h and requiring at least 1 h equili-
bration). GlucoBand is another medical device with-
out successful commercialization, being oriented
more to the wellness market instead of the medical
one [35]

(iii) The skin suction blister technique is based on analy-
sis of a blister obtained by a vacuum suction over a
small area of the skin [36] as a well-tolerated painless
procedure with a low infection risk. Glucose concen-
tration in the analyzed blister is lower than that seen
in plasma but correlates well with the concentration
in the blood [37], especially to the HbA1c value,
which corresponds to a three-month average glucose
values. Symphony is a commercially unsuccessful
product which is applied to a permeated skin to ana-
lyze the electrochemical properties [38] by using a
sensitive biosensor which measures the transdermal
glucose flux

(iv) The sonophoresis technique uses low-frequency
ultrasound to increase skin permeability and causes
expansion and contraction of gaseous inclusions
that open pathways for interstitial fluids to transport
glucose to the epidermis [39], where it is measured
by a conventional electrochemical sensor [40]. This
technique is sometimes considered minimally inva-
sive as it creates micropores in the skin to enable
the interstitial fluid containing glucose to come out-
side [22]. SpectRx is a product that is not yet com-
mercialized, which uses laser to create micropores
in the outermost skin layer to collect interstitial fluid
containing glucose

Bruen et al. [41] discuss several wearable and noninvasive
methods based on monitoring the interstitial fluid and wear-
able devices based on detection of the sweat (eyeglass, flexi-
ble wristband, etc.), breath analysis, saliva analysis (tattoo
printed on a tooth, etc.), and ocular fluid (smart contact
lens). Wearable glucose monitoring using epidermal sensors
was reviewed by Kim et al. [42]. Concentration of glucose in
interstitial fluid depends on blood glucose levels [43],
although there is a significant time difference for transmis-
sion of the corresponding blood glucose levels to the intersti-
tial fluids [44].

4. Optical Noninvasive Glucose Measurements

When light meets biological tissues, it can suffer reflection,
scattering, and transmission being proportional to the struc-
ture and chemical components of the sample [21], as a basis
of plenty of optical-based noninvasive glucose measurement
methods [45, 46]. These are differentiated according to the
analyzed band of electromagnetic radiations and interpreta-

tion of glucose levels from the received spectrum [20] by
selectivity and interference to other compounds using multi-
variate calibration vectors [47] and several detection and
multistage separation principles [48].

The following optical noninvasive methods have been
analyzed to more or less successfully detect the diabetes level:

(i) Infrared spectroscopy is based on rotational and
vibrational transitions of molecule chemical
bonds, and the corresponding fluctuation is mea-
sured by the incident radiation [49]

(ii) Near-infrared (NIR) spectroscopy is based on the
investigation of a visible and near-infrared range,
including wavelengths 0.59–0.95μm [50], 1.21–
1.85μm [51], and 2.12–2.38μm [52] chosen due
to weak water absorption and relatively high
energy of the measured signal [21]. Although mea-
surements do not depend on skin pigmentation,
they depend onmolecular structure and absorption
spectrum ability, so several wavelengths are used
for multivariate analysis with calibration. Although
several medical devices (SugarTrac, Dream Beam,
Diasensor, MedOptix, etc. [22, 30]) have been
developed using the NIR spectroscopy method,
they still are commercially unsuccessful

(iii) Midinfrared (MIR) spectroscopy gives more dis-
tinct glucose peaks [21] analyzing the wavelength
spectrum 8.38–9.71μm [53]. Measurements of a
specific wavelength before and after interaction
with matter are compared, and effects on stretch-
ing and bending of molecules are used to deter-
mine glucose concentrations. A sensor using
depth-selective MIR spectroscopy of skin based
on total infrared reflection photothermal deflec-
tion has been described in [54] and absorption
spectroscopy based on a few wave numbers in [55]

(iv) Raman spectroscopy [56] evaluates scattering of
single wavelength light, which is dependent on
rotational or vibrational energy states within amol-
ecule and highly specific absorption bands with
respect to original laser light [57]. A multivariate
analysis is applied to detected molecule quantity
and reduced interference from water compared
with MIR or NIR spectroscopy. There are several
research projects by LightTouch Medical, C8
Medisensors [58], and Massachusetts Institute of
Technology applying the Raman spectroscopy
method on skin [22]. Development of a Raman
spectrometer suitable for home-use noninvasive
glucose monitoring was also reported in [59]

(v) Photoacoustic spectroscopy measures ultrasonic
waves created by tissue absorption of pulsating
light created by a laser diode [60], as their inter-
action generates heat and causes pressure varia-
tions in the sample in the form of acoustic
signals monitored by a piezoelectric transducer
[61]. A theoretical study of resonant photoacoustic
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spectroscopy for noninvasive glucose detection was
reported in [62]. Aprise is a medical device that was
clinically tested [63]. It utilizes the photoacoustic
properties of the blood to infer the prevailing glu-
cose levels, when ultrasound waves illuminate the
tissue with laser pulses and acoustic signals are ana-
lyzed for the depth profile of the light absorbance of
the skin above a blood vessel

(vi) Ocular spectroscopy is applied to tears by using a
hydrogel-bound contact lens [64] and using a spec-
trometer to measure the change in the reflected
light received when a light source illuminates the
lens. A lot of weakness has been detected in the
application of this method, such as delay of glu-
cose concentration, biocompatibility, and differ-
ence between the eyes [65]

(vii) Scattering is the effect when the radiated signal is
reflected by the tissue parts, such as cell membranes
and collagen fibre in the blood and the interstitial
fluid. Since the glucose changes the refractive index
of the tissue, measuring the reflected signal pro-
vides information to calculate the glucose level
[66]. Precision is affected by large interindividual
differences and sensor drift, motion, temperature,
water, and protein density [21]

(viii) Occlusion spectroscopy is similar to scattering
and optical coherence tomography methods mea-
suring the scattering effects on arterial flow,
instead of systolic flow. It uses enhanced light
transmission of erythrocyte aggregation to calcu-
late the glucose concentration [67]. The precision
is vulnerable to many intravascular variables such
as drug treatment, intrinsic erythrocyte aggrega-
tion, free fatty acid concentration, and chylomi-
crons [68]. OrSense is a medical device using
near-infrared occlusion spectroscopy, detecting
the red optical signal from blood due to changes
in the glucose concentrations in blood vessels or
finger, which has not yet been commercially
successful

(ix) Electromagnetic sensing uses electromagnetic
sensors to measure the conductivity of dielectric
parameters changed by the glucose concentration
on a specific resonant frequency of 2.664MHz
[69]. Precision of the glucose measurements is
strongly affected by environmental temperature
and physiological blood dielectric parameter
changes. TouchTrak is a high-cost medical device
using electromagnetic sensing [22] and is not
commercially successful. GluControl GC300 is a
medical device, which has no significant proof of
its accuracy and is poorly described [30].

(x) Thermal emission spectroscopy measures the nat-
urally emitted infrared signals generated in the
human body due to changes in glucose concentra-
tion, similar to clinical tympanic membrane ther-

mometers, based on wavelengths of 9.8m and
10.9m [70]. This method can be applied on the
skin of the forearm, fingertip, or ear to detect glu-
cose concentrations [53]. Infratec develops a por-
table handheld glucose measurement device built
on a thermal emission spectroscopy method, not
being yet commercialized [22]

(xi) Temperature-regulated localized reflectance uses
the scattering of a localized reflected light signal
with wavelengths of 0.59μm and 0.935μm [71].
Measured temperature variations between 22°C
and 38°C are related to glucose concentration
[50]. Precision of measurements is affected by
probe position, physiological parameters, and dis-
ease conditions

(xii) The metabolic heat conformation technique uses
thermal and optical sensors to measure thermal
generation, blood flow rate, and hemoglobin and
oxyhemoglobin concentrations strongly related
to glucose concentration [72]. Multivariate sta-
tistical, regression, and cluster analyses, includ-
ing multiwavelength spectroscopy (wavelengths
0.47μm, 0.53μm, 0.66μm, 0.81μm, 0.88μm,
and 0.95μm), are used to calculate the glucose
value [73]

(xiii) The far-infrared (thermal infrared) technique uses
the dependence of the cutaneous microcirculation
on the local glucose concentration, which is
observed by inducing controlled, periodic temper-
ature variations in the skin and assessing MIR
light scattering [53]. The far-infrared dielectric
properties of sugars in the condensed state are
dominated by vibrational modes of their intermo-
lecular hydrogen-bonded network [74]. The basic
principle of absorption is due to the existence of
particular vibrational and rotational transitions
of weak bonds and bonds of heavy atoms with
wavelengths between 10μm and 1000μm

(xiv) Terahertz time-domain spectroscopy measures
the radiation absorption obtained from single-
frequency (wavelength 0.9μm) very short laser
pulses (in the order of picoseconds). The method
is based on time-domain analysis to get the phase
change from reflected and scattered signals which
allows the detection of the optical properties
dependent on glucose concentration [75]. An
ultrafast laser pump with a specific pulse shape
can allow a broad frequency sweep and by apply-
ing time-domain signal processing of the detected
spectroscopic information can extract crucial
frequency-dependent information and determine
glucose levels [76]

(xv) Millimeter and microwave sensing allows going
deeper into the tissue to reach regions with suffi-
cient blood concentration using lower energy per
photon and less scattering for accurate glucose
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readings [77]. The sensing is realized by a near-
field antenna using reflection methods

(xvi) Ultrasound technology is based on measurement
of the propagation time of ultrasound waves
through the extracellular fluid, which is depen-
dent on the glucose concentration due to the
strength of intermolecular bonding forces and
the density of the fluid [78]. Precision is affected
by the ambient temperature. The noninvasive
ultrasound or spectroscopy (light) technology
measuring the heat capacity and conductivity as
a two-parameter approach was used with Gluco-
Track [79], which is still a not commercially suc-
cessful product, although reporting good clinical
results [78]

(xvii) The polarimetry method estimates the optical
rotary dispersal of polarized light by a millidegree
precision polarization through tissue less than
4mm thick across the anterior chamber of the
eye [80]. Multiple linear regression or similar
methods used for multispectral polarimetry mini-
mize glucose prediction errors [81]. There is a
time delay for glucose peak concentrations to
propagate in the aqueous humour [82]

(xviii) The fluorescence method relies on measuring the
glucose levels in tears, since they reflect concentra-
tions similar to those in blood, and the idea is to
build a glucose-sensitive fluorescence system to
monitor glucose metabolism by detection of either
intrinsic cell fluorescence or fluorescent reporters
of cell metabolism [83]. Fluorescence uses the
principle of varying light emission frommolecules
in different states [84, 85]. GluMetrics uses the
fluorescence method on an intravascular target,
based on a glucose sensing polymer that glows in
the case of high glucose concentration, but still
not a commercially successful product [22]

(xix) Optical coherence tomography is based on irradi-
ation of a low-power laser source with coherent
light to the skin and an in-depth scanning system
to record the backscattered radiation (wavelength
between 0.8μm and 1.3μm) [86]. Since the der-
mal layer is dependent on the glucose concentra-
tion, measurements include induced changes
[87]. Precision is sensitive to motion, tissue het-
erogeneity, and interfering analytes [88]. Gluco-
Light is a portable medical product that targets
the skin and is still not being commercialized [22]

(xx) Kromoscopy is based on a near-infrared analog of
human color perception [89]. Four detector chan-
nels with complementary bandpass functions are
used for the evaluation of collected electromag-
netic radiation [90]. Complex vector analysis is
applied for observed significant differences in
channel responses for glucose and urea over dif-
ferent wavelengths of NIR light

Note that metabolic heat conformation and thermal
emission can be differentiated from optical methods as a spe-
cial class of thermal methods [91].

5. ML and NN Methods for Noninvasive
Glucose Measurement

In order to extract knowledge from the gathered measured
data, many studies use ML and NN methods. There are sev-
eral studies that successfully include ML and NN techniques
in methods of extraction and monitoring of glucose levels.
Monte-Moreno [92] proposed a system for a simultaneous
noninvasive estimate of the blood glucose level based on
machine learning techniques and using a photoplethysmo-
graph (PPG) sensor. The system idea is to find the relationship
between the shape of the PPG waveform and the glucose
levels. The system was tested on 410 individuals, and it used
several machine learning techniques. The best results were
obtained by the random forest technique. The distribution of
the points on a Clarke error grid placed 87.7% of points in
zone A, 10.3% in zone B, and 1.9% in zone D.

Yadav et al. [93] measured the blood glucose noninva-
sively by using the galvanic skin response and temperature
measurements along with PPG. They used the multiple linear
regression (MLR) and artificial neural network (ANN) tech-
niques to estimate the blood glucose concentration from the
multisensors. A significantly low mean absolute percentage
error (MAPE) (9.21%) and high R2 (0.94) demonstrated the
accuracy of this multisensory approach.

Malik et al. [94] detected fasting blood glucose levels
(FBGLs) in a mixed population of 175 healthy and diseased
individuals in India. Their detecting algorithm uses machine
learning techniques such as logistic regression (LR), support
vector machine (SVM), and artificial neural network (ANN).
The occurrence of elevated FBGL was estimated noninva-
sively using the status of an individual’s salivary electrochem-
ical parameters such as pH, redox potential, conductivity,
and concentration of sodium, potassium, and calcium ions.
The best performance for classifying high FBGLs was
achieved by the SVM using RBF kernel showing approxi-
mately 85% accuracy, 84% precision, 85% sensitivity, and
85% F1 score.

A noninvasive nocturnal hypoglycemia monitoring sys-
tem for type 1 diabetes patients is presented by Ling et al.
[95]. The system uses an extreme learning machine-based
neural network model. The results show that hypoglycemia
in type 1 diabetes mellitus children can be detected noninva-
sively from the real-time heart rate and corrected QT inter-
val. The testing performances of the proposed algorithm for
the detection of hypoglycemia achieved sensitivity of
78.00% and specificity of 60.00%.

Reddy et al. [96] proposed a noninvasive blood glucose
measurement method based on microwave transmission
and the machine learning technique. The blood glucose
concentration is detected by analyzing the reflected micro-
wave signals.

The machine learning technique is used to facilitate real-
time processing and to provide an alert for the patients with
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hyperglycemia conditions. The system can also suggest a pre-
cise dose of insulin to intake.

Carter et al. [97] proposed a noninvasive diagnostic
method using concentrations of twenty-two elements in toe-
nails and personal information such as age, gender, and
smoking history. The authors used seven different machine
learning techniques to perform the robust classification of
type 2 diabetes. They compared the performance of forty-
six distinct machine learning models on resampled training
data and testing data. The best results were achieved with
the random forest model (seven out of nine test samples were
predicted correctly).

Das et al. [98] measure the galvanic skin response of
11 diabetic patients and 8 normal controls. The novel nonin-
vasive system is based on the principle of skin impedance
spectrogram and heart rate variability. To compute the heart
rate variability, they acquired ECG signals from 20 normal
controls and 20 diabetic patients. In the study, they use fea-
tures such as Welch’s power spectral density estimation.
Artificial neural networks were used to classify GSR signals,
and the obtained accuracy is 100%. During the analysis of
diabetes mellitus, they have proven that there is a change in
some parameters related to heart rate variability.

A compact microwave sensor has been proposed [99] for
glucose sensing based on the utilization of the artificial neural
network and has been simulated with the proposed models
and measured with a fingertip as well as glucose/water solu-
tions. It has been concluded that the presence of biological
tissues decreases the measurement sensitivity. However, the
sensor can measure the glucose level when the solution is
directly placed on the sensor.

Low-cost continuous glucose and noninvasive BG detec-
tion system is presented [100] based on a combination of the
conservation-of-energy method with a sensor for collecting
oxygen saturation (SPO2), blood flow velocity, and heart rate.
Also, methods for a basal metabolic rate (BMR) and BV
detection are proposed based on human body heat balance
and PPG signals. The system includes a module for multisen-
sor information fusion. The intelligence is implemented by
using a decision tree and backpropagation neural network.
The reported achieved accuracy is 88.53%.

Artificial neural networks (ANNs) combined with parti-
cle swarm optimization (PSO) are proposed to model the
nonlinear relationship between the blood glucose concentra-
tion and near-infrared signal [101]. The weight coefficients of
the ANNs represent the difference between individual and
daily physiological rule. The Bland-Altman method has been
applied to show that the predictions and measurements are
in good agreement. The PSO-2ANN model is concluded to
be a nonlinear calibration strategy with accuracy and robust-
ness using 1.55μm spectroscopy, able to correct the individ-
ual difference and physiological glucose dynamics.

Another low-cost portable noninvasive blood glucose
measurement system based on near-infrared light is pre-
sented in [102]. Regression analysis is applied to model the
relationship between the detector output voltage and the glu-
cose concentration. The accuracy of the device has been
tested by comparing the noninvasively estimated and inva-
sively measured blood glucose. The neural network method

is used to estimate the glucose concentration. The results of
the prediction of glucose concentration show that the system
errors are in the clinically acceptable region.

Todd et al. [103] review existing research in methods of
extraction and monitoring of glucose levels, especially focus-
ing on the performance of ML methods, such as fuzzy logic,
neural networks, and decision trees. The most promising
result with the accuracy of nearly 98% was produced by neu-
ral networks and recurrent neural networks.

The presented work in [104] focuses on the design of
low-cost, painless, and noninvasive blood glucose measure-
ment system by using near-infrared LED and four photodi-
odes. The attenuated light is transformed into a voltage
signal. The voltage signal is calibrated using the Levenberg-
Marquardt-based artificial neural network to obtain the glu-
cose concentration. The accuracy of the proposed system has
been tested by comparing it with invasively measured blood
glucose. The errors obtained are in a clinical range.

6. HRV-Based Noninvasive
Glucose Measurement

An ECG is the electrical signal representation of the heart
action potential. The heart rate is being controlled by the
autonomous nerve system, the same that regulates the blood
pressure and the glucose level. Thus, the last group of
methods is used to produce medical devices including wear-
able ECG sensors and different HRV trackers, mainly repre-
sented by smart watches, smartphones, or similar devices,
including belts, special shirts, and patches.

The autonomic nervous system constituted the para-
sympathetic and sympathetic parts which operate indepen-
dently of each other or interact cooperatively to control
heart rate, cardiac output, myocardial contractility, cardiac
electrophysiology, and the constriction and dilatation of
blood vessels [105]. Thus, HRV is an essential tool to diag-
nose the cardiac autonomic neuropathy for both clinically
asymptomatic and symptomatic patients as a serious com-
plication of diabetes mellitus.

Heart rate variability is a physiological phenomenon
consisting of oscillations in consecutive heartbeat intervals
controlled by the autonomic nervous system and is caused
by the ability of the heart to handle the ever stresses and
relaxations placed on the body. Several studies show that
there is a correlation between HRV and the glucose level
of the subjects.

Recent studies [106–108] show a big correlation
between the HRV from one side and glucose level from
the other side, since they show that diabetes caused progres-
sive autonomic dysfunction and decreased variability in the
heart rate [109, 110].

The overall result is the differentiation of diabetic
patients from normal whenever a reduction of HRV param-
eters is detected. Kudat et al. [107] investigated cardiovascu-
lar autonomic neuropathy in diabetics and healthy controls
by analysis of heart rate variability and concluded that diabe-
tes patients had lower values for time-domain and frequency-
domain parameters than other normal subjects. They have
analyzed that diabetes mellitus is a cause of autonomic
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dysfunction in the gastrointestinal and urogenital systems
besides the cardiovascular system but focused their research
on autonomic dysfunction.

Five different tests have been introduced by Ewing et al.
[111] of short-term R-R alterations to identify cardiac auto-
nomic neuropathy in patients with diabetes, based on heart
rate response to respiration and to standing, during and after
a provoked increase in intrathoracic and intra-abdominal
pressures (Valsalva maneuver), and blood pressure response
to orthostasis and isometric exercise.

An increase in the ability to detect minor changes in car-
diac autonomic function with long-term HRV monitoring is
reported [112] when compared with standard tests of auto-
nomic function. There was evidence of significant HRV
reductions for those diagnosed with diabetes compared with
nondiabetic subjects, indicating that the presence or absence
of neuropathy may conceal important information. Some
studies included data recorded by wearable heart rate sen-
sors. They have also confirmed high accuracy at detecting
diabetes (0.8451) by a semisupervised training method, semi-
supervised sequence learning, and heuristic pretraining and
show that they outperform hand-engineered biomarkers
from the medical literature [106].

HRV parameters can be classified as a time series
domain, a frequency domain, and other domains [113] such
as long-term (24h), short-term (5min), and ultra-short-term
measurements (less than 5min) [114–116]. Most of the stud-
ies [109, 113] conclude that long-term HRV variability is
more sensitive for detecting diabetes autonomic neuropathy
from the conventional short-term measures.

7. Discussion

A comprehensive overview of the progress of glucose mea-
surement is elaborated by Villena Gonzales et al. [14]. They
specify using various glucose detection techniques based
on electric, thermal, and optical methods, and recently, the
nanotechnology approaches are essential for minimally inva-
sive and noninvasive glucose measurement technologies.

Several properties of glucose are manifested under differ-
ent phenomena. García-Guzmán et al. [19] conclude that
chemical, electrical, optical, thermal, acoustic, or any combi-
nation of these glucose properties can achieve greater accu-
racy in the determination of glucose concentration in blood
and that both optical and electrical properties are the most
suitable for noninvasive glucose measurement. In this paper,
we also give advantage to the analysis of glucose properties by
the analysis of autonomic dysfunction.

Methods using sweat-based glucose monitor wearable
biosensors are reported as ongoing projects [117, 118].

A hybrid approach [19], which includes sensing of more
than one physiological parameter, is becoming popular, such
as electrochemical or combination of measuring the sound
speed, conductivity, and heat capacity obtaining thereafter a
weighted average or a combination of absorption spectros-
copy and complex bioimpedance measurements [119]. In
addition, a complex big data analysis of several parameters
with corresponding artificial intelligence methods are hot
topic research and can produce promising results.

Data analytics in processing various glucose properties
for noninvasive and minimally invasive techniques is an
emerging technology [120] contributing to the field of diabe-
tes informatics and providing a more data-rich approach to
understanding and managing diabetes.

Analyzing the accuracy, the American Diabetes Associ-
ation [121] recommends the control of all glucometers
both at the start of usage and at regular intervals and also
the accuracy of blood glucose to be <5% of the measured
value or accuracy better than 15mg/dl (0.8mmol/l) [20].
Solnica et al. [122] conclude that all glucometers examined
have small deviations from laboratory reference values
(<10%), although there are reports that, yet, some of the
glucometers do not meet the recommendations and stan-
dard requirements.

Besides the accuracy, there are other socioeconomic
parameters that can be treated as a barrier to the adoption
of the noninvasive glucose monitoring [19], including com-
mercialization uptake in the global economy. It is believed
that next-generation glucometers or continuous glucose sen-
sor systems may become excellent predictable and selective
devices and probably in the future become a fully reliable
source of information and acceptable for patient use [20].

Lin et al. [91] specify major challenges for development
on noninvasive glucose measurements, extracting issues in
obtained specificity and sensitivity, variable physiological
time lag, need for the calibration process, and usability. Talk-
ing about usability, one needs to describe if the device is a
wearable or pocket-size hand-held device. For example, Glu-
coWise is a U-shaped sensor that fits over the corner of the
hand between the thumb and forefinger. Analyte is a hand-
held device that is inserted into the ear, whereas GlucoTrack
is clipped to the earlobe [123].

A roadmap of continuous glucose measurement initiates
next generations of noninvasive techniques [124], and some
of the future key challenges [22] include the following:

(i) Improvement of the sensitivity and positive predictive
rate in the detection of glucose levels and correspond-
ing accuracy and precision of glucose measurement
medical devices

(ii) Development of a wearable continuous noninvasive
glucose measurement system

Note that besides the lack of precision, robustness, and
stability, the cost-effectiveness that is measured as a price
per use is the key factor to accept a certain technology and
make it commercially successful.

8. Conclusion

In this paper, we have presented an enhanced set of noninva-
sive techniques for glucose measuring based on HRV and
using sophisticated artificial intelligence algorithms. Those
methods are important since they enable the patients’ com-
fortable continuous monitoring of the blood glucose levels.

Usually, the noninvasive measurements have been classi-
fied as transdermal and optical methods. We specified
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autonomic dysfunction as another class, based on an impor-
tant observation that wearable ECG sensors are capable of
measuring HRV. This trend in modern real-time remote
noninvasive monitoring by wearable mobile medical devices
could be correlated with methodologies for glucose monitor-
ing. Reduction in HRV variability is an indicator of autonomic
diabetes dysfunction, and thus, the technology based on wear-
able ECG sensors may have promising results in the determi-
nation of the ability to control the blood glucose level.
Although these methodologies may have promising results
in terms of patients’ comfort, they still lack the needed accu-
racy. In order to get a better understanding of the gathered
measurement data, many of those measurement methods
use ML and NN techniques to achieve better accuracy.

Expenses and proving benefit are probably those that
need to be made more affordable and demonstrated in
further research. However, it takes a lot of time to market
the technology from one side and to change the behavior
of both the patients and doctors.

Future trends include the use of new sophisticated tech-
niques, such as the use of artificial intelligence algorithms
or sensing other psychophysiological parameters, such as
the autonomic dysfunction based on heart rate variability,
as discussed in this article. Nanotechnologies are also a
promising technique, although they are commonly treated
as minimally invasive techniques.
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