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A B S T R A C T   

Low quality of the air is becoming a major concern in urban areas. High values of particulate matter (PM) 
concentrations and various pollutants may be very dangerous for human health and the global environment. The 
challenge to overcome the problem with the air quality includes efforts to improve healthy air not only by 
reducing emissions, but also by modifying the urban morphology to reduce the exposure of the population to air 
pollution. 

The aim of this contribution is to analyse the influence of the green zones on air quality mitigation through 
sensor measurements, and to identify the correlation with the meteorological factors. Actually, the objective 
focuses on identifying the most significant correlation between PM2.5 and PM10 concentrations and the wind 
speed, as well as a negative correlation between the PM concentrations and wind speed across different mea-
surement locations. Additionally, the estimation of slight correlation between the PM concentrations and the real 
feel temperature is detected, while insignificant correlations are found between the PM concentrations and the 
actual temperature, pressure, and humidity. 

In this paper the effect of the pandemic restriction rules COVID-19 lockdowns and the period without re-
striction are investigated. The sensor data collected before the pandemic (summer months in 2018), during the 
global pandemic (summer months 2020), and after the period with restriction measures (2022) are analysed.   

1. Introduction 

Air pollution is among the highest environmental risks impacting 
human health. Major air pollutants in cities include PM, sulphur dioxide 
(SO2), carbon monoxide (CO), ozone (O3), nitrogen oxides (NOX), and 
volatile organic compounds (VOCs) [1]. Research presented in Refs. [2, 
3] shows increased rates of death associated with increased air pollut-
ants concentration (such as O3, PM and SO2). According to the report 
presented in Ref. [4], air pollution is a major cause of death in many 
European countries, and the cause for more than 400,000 premature 
deaths. Except for human health, these pollutants can be a serious 
danger to monuments and artwork, especially the memorials located in 
the city centres [5]. 

The impact of air pollution is the highest in urban environments. 
Global urbanisation and construction of new buildings in big cities lead 

to temperature increase and consequently, in air pollution increase [6, 
7]. This phenomenon known as urban heat island (UHI) effect has been 
studied by lot of authors. In the paper presented by Ref. [8] the city 
temperature can rise by 2 ◦C–8 ◦C, while according to newer research 
[9] the city temperature rise can be between 5 ◦C and 15 ◦C. In the paper 
presented by Grimmond [10], it is estimated that by 2030, 61% of the 
world’s population would inhabit cities, and the UHI effect would be 
more intensive as a result of deforestation and global warming. In order 
to overcome the urban environmental problems some authors have 
analysed the effects of vegetation, particularly trees, on cooling urban 
air, shading buildings and absorbing gaseous air contaminants [11,12]. 
A simple and innovative approach considers implementation of green 
walls, green facades and green buildings for air pollution mitigation. The 
effectiveness of such approach has been confirmed in various cases 
applied in Switzerland, Sweden UK, USA, Spain [13]. Some of the 
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benefits of the implementation of vertical green walls and green roof 
surfaces on building facades include improvement of the thermal char-
acteristics of the objects, reduction of the noise level as well as reduction 
of the energy requirements of the facilities [14]. The impact of vegeta-
tion on the thermal environment of buildings was examined in the 
studies of [15,16]. Huang [17] quantified that by using green roofs in 
Tokyo and showed that the average ambient temperature can be low-
ered by 0.3 ◦C, while in the work presented by Ref. [18], the estimate of 
the temperature was 0.1 ◦C lower. The research presented in Ref. [11] 
conducted a study to determine the effect of tree planting and re-roofing 
on ambient temperatures and air pollution. The experiments derive that 
the ambient temperature can be lower by up to 3 ◦C and the air around 
the building can be cooler by implementing trees combined with cool 
roofs. [19] Similarly looked into the effect of garden roofs on tempering 
air temperatures. It was concluded that garden roofs are more effective 
in heat gain reduction in summer than heat loss in winter. The air 
pollution mitigation by implementation of green walls and green roofs 
was investigated in the work of [20]. In the paper presented by Ref. [21] 
different arrangements of trees on pollution dispersion were evaluated. 
Authors in Ref. [22] suggested Computational fluid dynamics (CFD) 
model for predicting the pollutant level and its distribution. The model 
was validated by a test case on a wind tunnel urban canyon in Belgium. 
They used wind catchers to increase the dispersion process of air 
pollution removal. Similarly, the study [23] evaluated the ability of an 
artificial neural network (ANN) algorithm to predict hourly air pollutant 
concentrations and two air quality indices for Ahvaz, Iran over one full 
year. The algorithm achieved a correlation coefficient and root-mean 
square error of 0.87 and 59.9 respectively, demonstrating its applica-
bility for cities such as Ahvaz to forecast air quality and prevent adverse 
health effects. Another work [24] focuses on data including meteoro-
logical parameters, visibility and particulate matter mass concentrations 
to determine whether there are any meteorological parameters that can 
be used to predict dust storms. An ANN approach was applied and had 
strong forecasting skill (R2 = 0.71) for the maximum 3h mean PM10 
concentration during dusty days, suggesting that dew point temperature 
may be used to predict dust storms. 

In this context, PM concentrations are directly affected by meteo-
rological parameters such as temperature, wind, precipitation [25,26]. 
For example, winds reduce the concentration of the particulates (PM2.5 
and PM10) as the winds help the particulates stick to the leaves and 
stems of the plants [27]. The research presented by Refs. [28,29] shows 
that the green area mitigates the fine particles, with an aerodynamic 
diameter lower than 2.5 μm (PM2.5) on average by 25% and PM with an 
aerodynamic diameter lower than 10 μm (PM10) on average by 37% 
compared to the neighbouring non-green areas. The results show a 
strong correlation between PM2.5 and PM10, while the combination of 
low temperatures, high humidity and no, or low wind speed lead to high 
PM concentrations. The results presented in Ref. [30] show that the 
weather information parameters such as wind, temperature and hu-
midity are correlated with air pollution, which allows to develop a 
machine learning air pollution model based on weather information and 
historical measurement data on the pollution. 

An essential element in evaluation of the various methods for air 
pollution reduction is the possibility to measure, collect and analyse 
data. The different environments and methods require adequate mea-
surement systems which provide reliable results. For the purpose of the 
research presented in this paper, an air quality measurement system 
consisted of wireless sensor nodes (WSNs) is implemented. Each sensor 
node includes a power unit, sensors for different gaseous pollutants 
measurement, a microprocessor and a transceiver. The air quality 
monitoring system is developed as a low - cost and energy - efficient 
replicable system, confirmed in the analyses presented in Refs. [28,29, 
31] which consider its implementation, replication and the consumption 
of the WSNs. 

This paper focuses on the estimation of the impact of the relative 
position of the measurement sensors and the disposition of the green 

zones. The investigations also provide analysis on the influences of 
meteorological factors, such as wind speed and direction, relative hu-
midity, and temperature on PM mitigation. The analyses are based on 
measurement data, and argumented prognosis showing which param-
eter has the highest influence on the PM concentrations. 

2. Background research 

The lockdown response to coronavirus disease 2019 (COVID-19) has 
caused reduction in global economic and transport activity. Reduced 
mobility and lockdown measures implemented across the world are 
considered to have helped in air quality improvement. However, there is 
no empirical equation that connects public mobility changes and air 
pollution during the COVID-19 period. As presented further in the text, 
the findings in most of the studies indicate that reducing unnecessary 
outdoor mobility should help in maintaining air quality in the post- 
pandemic world. 

2.1. Meteorological factors impact on COVID-19 spread and effects 

More influence of the transmission of COVID-19 has been detected in 
regions with cold and dry temperature conditions, where winters are 
cool, while summers are wet and warm (Southeast region of the U.S. and 
large parts of China, Brazil and Argentina). Studies conducted in 
Singapore, India and China have found a positive relationship between 
temperature and daily reported cases of COVID-19 virus [32], while 
positive link between temperature, relative humidity, absolute humidity 
and wind speed on one side and COVID-19 on the other side were 
detected in the studies explored in Thailand [33] and Turkey [34]. 
Similarly, authors in the study [35] looked at the incidence of COVID-19 
in the Petroleum Hospital of Ahvaz, Iran between March 2020 and 
March 2021. The results showed that a high daily air temperature and 
relative humidity reduced the daily incidence of COVID-19. A negative 
correlation was detected between COVID-19 cases and air temperature 
and relative humidity. 

A review presented by Mecenas [36] indicated that wet and warm 
climates reduced the COVID-19 spreading. The studies conducted in 
China [37] and Indonesia [38] also concluded that lower rates of 
COVID-19 were associated with high values of the temperature and 
humidity. In the paper investigated by Christophi et al. [39], they have 
reported that a 10 ◦C increase in the ambient temperature resulted in 6% 
decrease in COVID-19 mortality rates at 30 days after the first reported 
death. Furthermore, epidemiological data showed that 1 ◦C temperature 
increase was associated with a statistically significant 3% decrease in 
daily COVID-19 cases, while a 1% relative humidity increase was asso-
ciated with a 0.5% decrease in daily new COVID-19 deaths in 166 
countries [40]. Similarly, in the study presented by Liu [19], it was 
concluded that 1 ◦C ambient temperature increase was associated with 
less daily confirmed cases in 17 cities in China. While the study exam-
ined in Brazil [41], confirmed negative linear relationship within the 
range of 16.8–27.4 ◦C associated with higher temperature on one side 
and daily confirmed COVID-19 cases on the other side. 

The survey examined in U.S countries showed that low air temper-
ature, specific value of humidity and UV radiation were associated with 
increased number of SARS-CoV-2, while cold and dry weather and low 
UV radiation levels were fairly connected with coronavirus transmission 
[42]. While some of the above mentioned studies showed some rela-
tionship between the meteorological parameters and COVID-19 rate, in 
others no such relationship was found. 

2.2. The effect of COVID-19 on air pollution 

As presented in this section, it can be concluded that during the 
pandemic COVID-19 lockdowns, the air pollution was drastically 
reduced [43]. The pandemic has caused reduced air pollution as the 
public transportation has been cancelled in many cases, airlines have 
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been drastically reduced, which provides lower carbon air emissions 
[44]. Lockdowns and decreased mobility of vehicles and people 
improved the air quality and surrounding environment. In the paper 
presented by Ref. [45] the daily global emissions of CO2 decreased for 
17% in April 2020 compared with the mean values in 2019, while the 
overall impact on annual emissions in 2020 depends on the duration of 
the lockdowns. The correlation between COVID-19 lockdown and the air 
quality improvement from 44 regions in northern China was analysed in 
Ref. [46]. The air pollution mitigation in their examinations were 
associated with the travel restrictions. In the research presented in 
Ref. [47] the CO concentration in Sao Paulo, Brazil decreased by 64,8% 
compared with the average of the past 5 years due to the partial 
lockdown. 

Mehmood [48] and Cole [49] reported positive relationship between 
long term exposure on PM2.5 concentrations and COVID-19 daily cases, 
related to hospital admission and deaths in India, Pakistan and Iraq. The 
results taken from 15 provinces in Iran from April to June 2020 showed 
that dry land provinces had lower rates of cases, while air temperature 
was positively correlated with the number of cases. Air temperature, dry 
lands, and population were important factors in controlling the spread of 
coronavirus [50]. Alike, strong correlation was associated between 
PM2.5 and PM10 concentrations and COVID-19 case fatality rates (CFR) 
in 49 Chinese cities, including Wuhan, the epicentre of the COVID virus 
[51]. In the study presented by Yao [52], the authors showed that for 
every 10 μg/m3 increase in PM2.5 and PM10 concentrations, COVID-19 
CFR also increased by 0.24% and 0.26%, respectively. Similarly, [40] at 
the Harvard University T.H. Chan School of Public Health showed that 
an increase of just 1 μg/m3 of PM2.5 concentration is associated with 
15% increase in COVID-19 deaths. Another research that concludes the 
positive correlation between the COVID-19 mortality and high exposure 
of PM concentrations are presented in Refs. [48,53]. They analysed that 
persons living in an areas with high levels of PM2.5 concentrations are 
more sensitive to developing respiratory and cardiovascular diseases. 

According to National Aeronautics and Space Administration 
(NASA) and the European Space Agency (ESA) the levels of Carbon 
Dioxide (CO2) and other air pollutants decreased in Wuhan, China 
during the lockdown days [54,55]. They also reported that in some of 
the COVID-19 epicentres, such as Wuhan, Italy, Spain, USA etc, air 
pollution reduced up to 30% [43]. In the reports presented by ESA, the 
level of NO2 concentrations decreased by 30–54% in Paris, Milan and 
Rome ([4,56]. 

For years the city of Skopje has been facing the problem of bad air 
quality, especially during the winter months. The enormous concen-
trations of PM have been detected for a number of years in the capital 
city of North Macedonia [57]. North Macedonia has been strongly 
affected by COVID-19, with significant death rate associated with the 
virus. However, more data and analyses are required to investigate if 
that could be also attributed to high PM concentrations in the air. 

The aim of this paper is to analyse the influence of the COVID-19 
restriction rules and lockdowns on air quality reduction, as well as the 
particular influences of the meteorological factors, derived by sensor 
measurements, such as wind speed and direction, relative humidity, and 
temperature on air quality and their impact on PM mitigation. 

3. Methods 

The following two subsections provide detailed descriptions of the 
location of the measurement, test equipment and the measurement 
system used for data acquisition. The statistical tools which are used to 
analyse the collected data are given in Subsection 3.3. 

3.1. Sensor test facility 

In order to identify the influence of the green areas, traffic and 
movement of people, different positions of the sensor nodes were cho-
sen. In 2018 the positions of the nodes were located near the Faculty of 

Electrical Engineering and Information Technologies building, as 
depicted in Fig. 1 (the sensor nodes are depicted in magenta). At the 
beginning of the measurement setup, the green wall structure was 
installed. The green wall structure consisted of two rows of hedera helix 
plants, which were planted during the spring period. The sensor nodes 
were placed on a platform, where two photovoltaic panels were already 
installed. The sensor node 3′ had a relative position closer to the 
secluded green area, while the sensor node numbered 2′ was located 
closest to the green wall structure. Sensor node 1’ had a position close to 
a road, where vehicles and people are usually crossing. The measure-
ment results considering the impact of the green wall structure on air 
quality improvement is already presented in Refs. [28,29]. 

Later in 2019, the positions of the nodes were changed. As depicted 
in Fig. 1 (the sensor nodes are depicted in magenta) the sensor node 1 is 
close to the pedestrian pavement, sensor node 2 is located near the green 
area. Near the location of the sensor node 2 there is a small green area 
(as a part of the building patio). 

This paper analyses the period before COVID-19 lockdown restric-
tion rules (with emphasis on the summer months, 2018), during the 
COVID-19 lockdown (2020), and the summer months in 2022, when life 
gets back to normal. Due to technical problems with insufficient data in 
2019 and 2021, the measurement results are not presented in this paper. 

3.2. Measurement system description 

The originally developed measurement system based on wireless 
sensor network technology is composed of PM and gas sensors for 
monitoring the parameters of the air quality. The measurement moni-
toring system consists of few sensor nodes each of them containing four 
sensors and a Wi-Fi module integrated on a single-board controller. 
Sensors integrated in each node can measure the following parame-
tersPM2.5, PM10, CO and NO2. SDS011 is the integrated device 
including the PM2.5 and PM10 concentrations measurement. This 
sensor unit can measure the particle concentration between 0.3 μm and 
10 μm. MiCS-4514 is the other sensing unit that has integrated two 
sensors for CO and NO2 measurements. The main characteristics of the 
sensing units are presented in Table 1. 

The controller is responsible for processing the data, before they are 
transmitted to the network. This type of integrated controller can be 
used for various applications, from low-power sensor networks to high 
demanding power applications like music streaming and voice encod-
ing. The main characteristics of the controller are presented in Table 2. 

The Wi-Fi modules that are integrated part of the sensor nodes, send 
data to the closest routers, which are located in the Faculty building. The 
collected data from the closest routers are uploaded on an open platform 
[58] and can be monitored on-line or downloaded for additional ana-
lyses. The hardware details and the main characteristics of the described 
setup are available in Ref. [59]. 

Fig. 1. Overview of the location with the disposition of the sensor nodes during 
2018, 2020 and 2022. 
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3.3. Statistical tools 

For the analysis of the sensor measurement data, a set of statistical 
tools: descriptive statistics, cross-correlation, hypothesis tests were used. 
To determine the maximum, minimum, mean and variance for the 
observed periods, descriptive statistics were used, while hypothesis tests 
are necessary for determining distribution, regularity and statistically 
significant difference between measurements. The cross-correlation 
measures the similarity of two random values, but does not give a 
functional dependence between them. The functional dependence be-
tween the independent and the dependent variables are possible by 
implementation of a regression model. The variation coefficient is the 
ratio of the standard deviation to the mean and it measures the disper-
sion around the mean. Higher values of the coefficient lead to higher 
values of variability. 

The aim of this paper is to determine the influence of the sensor node 
location and other conditions on PM concentrations mitigation. In order 
to investigate the influence, hypothesis tests were performed. To 
perform these tests, H0, and the significance level α should be defined. 
The null hypothesis is also known as status quo. 

H0. There is no difference between conditions. (1) 
The value of α was set to 0.05, that indicates a 5% risk of concluding 

that a difference exists, when there is no actual difference. In each test p- 
value is determined for the given data and the obtained p-value is 
compared to the significance level α. The Null hypothesis H0 is rejected 
when p-value ≤ α, which means that differences between the considered 
conditions are statistically significant, while if p-value ≥ α, then the Null 
Hypothesis can be confirmed, which means that there is no statistically 
significant difference between the conditions. 

Additionally, to determine if there is a statistically significant dif-
ference between conditions when the variables do not have normal 
distribution, non-parametric tests are performed. For this analysis, non- 
parametric version of ANOVA known as Friedman test was applied [60]. 

4. Results and discussion 

The air quality measurement system started with the acquisition of 
the sensor measurement data in May 2018 at the Faculty of Electrical 
Engineering and IT in Skopje. 

This paper presents measurement periods taken through the summer 
months concentrating on the period 15th June-14th October during 
2018, 2020 and 2022. The period was chosen because of the COVID-19 
pandemic declared by the World Health Organization (WHO) [61], 

which led to introduction of restriction rules and quarantines. The 
measurement set for the period December 2018–February 2019 when 
the air pollution is usually higher compared to summer months was 
already presented in Refs. [28,29]. The highest PM concentrations, 
which reach the values of 306 μg/m3 for PM2.5 and 391 μg/m3 for PM10 
and occurred around midnight on 19th of January 2019, have been 
measured. These values are far above the allowed annual average PM 
concentrations for PM2.5 and PM10. 

4.1. Experimental measurements 

As described above, the measurement period encompasses summer 
months in the years before, during and after COVID-19 restrictive 
measures. During the pandemic, the Faculty building was mostly empty 
and the faculty staff were mainly working from home, the exams and the 
lessons were held online. At that period the traffic in the campus was 
drastically reduced compared to the years before. 

The graphs on Figs. 2 and 3 present hourly average data for PM2.5 
and PM10 concentrations respectively, including the first analysed 
period of about 7 days, starting from June 15, 2018 until 21st of June 
2018, and serve to show typical summer days, with periods of low PM 
concentrations. The analysed periods show higher average values of PM 
concentrations during the day, then during night-time. 

The graphs on Figs. 4 and 5 present hourly average sensor data for 
PM2.5 and PM10 concentrations respectively, for the second analysed 
measurement period of about one week, starting from 24th of June 2020 
until 30th of June 2020. Even more, this is the period when the first anti- 
COVID restriction rules (quarantine) started. The values for PM2.5 and 
PM10 concentrations are in the range of the allowed annual average PM 
concentrations. 

Also, it can be noticed that the concentration of PM2.5 is higher at 
the location of Node 2 (than at Node 1) but lower for PM10 (it is 
important to note that this sensor is located in the building patio). 

The third analysed period is chosen to be from 20th of June 2022 
until 26th of June 2022. Figs. 6 and 7 present hourly average sensor data 
for PM2.5 and PM10 concentrations, respectively. 

The results presented in Figs. 2, Figure 3, Figure 4, Figs. 5, Figs. 6 and 
7 suggest that there is a difference between the concentration of PM 
concentration (PM2.5 and PM10) in these different locations (during the 
whole period, daytime and night-time). These results indicate that 
during night-time the level of PM concentration is lower compared to 
the PM concentration during daytime, which was not case during the 
winter months. The highest values for PM concentration for winter 
months were reached during night-time. 

4.2. Statistical analysis of the measured sensor data 

This paper analyses the sensor data collected during no heating 
period in 2018, 2020 and 2022. Due to the COVID-19 restrictions in 
spring and summer 2020, the observed period for all three years is 

Table 1 
Main characteristics of the sensing units.   

SDS011 MiCS-4514 

Measurement parameters PM2.5, PM10 CO, NO2 

Supply voltage 5V 4.9V–5.1V 
Operating temperature range − 20◦C-50 ◦C − 30 ◦C -85 ◦C 
Range 0.0–999.9 μg/m3 / 
CO detection range / 1–1000 ppm 
Sensing resistance in air / 100–1500 kΩ 
Maximum working current 220 mA   

Table 2 
Main characteristics of the controller.   

Controller 

Measurement parameters EPS32 
Supply voltage 2.7V–3.6V 
Operating temperature range − 40 ◦C -85 ◦C 
Module interface SD Card, UART, SPI, I2C, Motor PWM 
Wi-Fi frequency range 2.4GHz–2.5 GHz    

Fig. 2. Concentration of PM2.5 for one-week, average hourly sensor data.  
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reduced to 15th June - 14th October. In 2018 the collected data from 
three sensor nodes were analysed, while in 2020 and 2022 the mea-
surement data from only two sensor nodes were calculated. The posi-
tions of the nodes are already given in Fig. 1. The presented results are 
obtained by statistical analysis of the average value the PM2.5 and PM10 
concentrations that active sensor nodes registered at the same moment 
of time. 

Overview of the meteorological dataduring the observed periods is 
given in Table 3, and the results indicate that the weather conditions in 
the observed three years are similar. In each year more than 55% of the 
time the wind in Skopje has been in direction west, north-west and 
north. 

The descriptive statistics of the PM2.5 and PM 10 are presented in 
Table 4. It actually presents the calculated descriptive statistics for: i) the 
whole measurement period, ii) daytime (8 a.m.–8 p.m.), and iii) night- 
time (8 p.m.–8 a.m.). Previous results [28,29] suggest that the 
night-time period, i.e. the period from 8 p.m. to 8 a.m. is related to peaks 
in the concentration of PM, although during this period the activity in 
the faculty zone, movements from both people and vehicles in the near 
vicinity of the experimental set up are set to minimum. Following the 
indication of previous work, the analyses in this paper were also done for 
both daytime and night time. The observed peaks in the night-time 
period are not directly caused by the activity at the Faculty zone, but 
are related to other sources of pollution. Investigation of the pollution 
sources is not in the scope of this paper. 

The Pearson correlation coefficient shows statistically significant 
positive correlation between the PM concentration and humidity (0.17 
and 0.11 for PM2.5 and PM10, respectively) and visibility (0.08 and 
0.09 for PM2.5 and PM10, respectively). Statistically significant nega-
tive correlation between PM concentration and cloud cover (− 0.04 and 
− 0.05 for PM2.5 and PM10, respectively), precipitation (− 0.06 and 
− 0.08 for PM2.5 and PM10, respectively), temperature (− 0.04 for 
PM2.5 and PM10) and wind speed (− 0.15 and − 0.17 for PM2.5 and 
PM10, respectively) is observed. 

Kolmogorov-Smirnov and Sahapiro-Wilk tests [62] are 

Fig. 3. Concentration of PM10 for one-week, average hourly sensor data.  

Fig. 4. Concentration of PM2.5 for one-week, average hourly sensor data.  

Fig. 5. Concentration of PM10 for one-week, average hourly sensor data.  

Fig. 6. Concentration of PM2.5 for one-week, average hourly sensor data.  

Fig. 7. Concentration of PM10 for one-week, average hourly sensor data.  

Table 3 
Descriptive statistics for the meteorological parameters for the period 15th June- 
14th October by year.   

2018 2020 2022 

range mean range mean range mean 

Temperature (◦C) [9,35] 22.3 [9,36] 21.91 [7,40] 22.17 
Real feel 

temperature (◦C) 
[7, 33] 22.2 [8, 35] 22.27 [7,40] 22.16 

Cloud cover (%) [0, 99] 97.00 [0, 92] 26.74 [0, 
100] 

23.96 

Humidity (%) [18, 
92] 

54.03 [16, 
92] 

55.79 [9, 95] 50.98 

Precipitation (mm) [0, 1.2] 0.02 [0, 2.4] 0.06 [0, 2] 0.03 
Wind speed (km/h) [0, 21] 8.65 [0, 23] 5.83 [0, 26] 6.48  
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nonparametric tests used to assess the normality of a given data set. The 
Kolmogorov-Smirnov test compares the cumulative distribution of the 
data set with a theoretical normal distribution, while the Sahapiro-Wilk 
test compares the sample mean and variance with theoretical values. 
Both tests can be used to identify departures from normality and, in 
some cases, can be used to determine whether the data should be 
transformed or whether a nonparametric test should be used instead of a 
parametric test. The tests Kolmogorov-Smirnov and Sahapiro-Wilik 
confirm that the analysed sensor data does not have normal distribu-
tion. At the same time the observed data results with positive kurtosiss 
and positive skewness. A positive kurtosis indicates that a distribution 
has a higher peak and longer tails than a normal distribution. This means 
that there are more extreme values in the distribution. A positive 
skewness indicates that a distribution has a long tail on the positive side 
of the mean (the right side of the distribution), and the mode is less than 
the mean. 

4.3. Hypothesis tests 

The obtained results, presented in Table 4, indicate the following 
statements.  

a) The concentration of PM is higher during night-time compared to 
daytime for all years considered; and  

b) The concentration of PM in 2020 is smallest compared to 2018 and 
2022. 

Therefore two null hypothesis are defined: 
Ha0: There is no difference between the concentration of PM2.5 

(resp. PM10) during daytime and night-time; Hb0: There is no difference 
in the concentration of PM2.5 (resp. PM10) in the years 2018, 2020, and 
2022. 

As the considered sensor data does not have normal distribution, a 
non-parametric hypothesis test should be performed. The variables are 
independent, hence Mann-Whitney U test and Kruskal-Wallis test should 
be performed for hypothesis Ha0 and Hb0, respectively. 

The Mann-Whitney U test for the hypothesis Ha0 rejects all six null 
hypothesis, and confirms that there is a difference in the concentration 
of PM2.5 and PM10 during daytime and night-time for all three years, i. 
e. that the concentration of PM is smaller during daytime. The Mann- 
Withney U test results with corresponding z values, given in Table 5, 
that can be converted into an effect size estimate r by the Rosenthal’s 
formula [63] r = Z̅ ̅̅

N
√ . The results show that the effect of 

daytime/night-time is medium for 2018 (r > 0.3) , while for 2020 and 

2022 the effect is small (r ≤ 0.3). 
The Kruskal-Wallis test [64] rejects the null hypothesis Hb0 for PM2.5 

and PM10 with p-value approximately 0.000, so it confirms that there is 
a difference in the concentration of PM. The post hoc test for PM2.5 
shows that there is statistically significant difference between 2018 and 
2020, as well as between 2018 and 2022, but the difference is not sig-
nificant when 2020 and 2022 are compared. The same post hoc test for 
PM10 locates a statistically significant difference between all pairs, i.e. 
2018-2020, 2018-2022, and 2020-2022. The Kruskal-Wallis test is a 
non-parametric statistical test used to compare the medians of three or 
more independent samples. In this case, the Kruskal-Wallis test has been 
used to compare the concentration (or median) of a given set of data 
across different years. The test has confirmed that the highest concen-
tration was in 2018, and the smallest concentration was in 2020. To 
evaluate the effect size, a pairwise Mann-Whitney test [65] is performed, 
and the results are presented in Table 6. The Rosenthal formula is a 
statistical measure that can be used to evaluate the magnitude of an 
effect size. When applied, it can show whether the effect size is small, 
medium, or large. In this case, the application of the Rosenthal formula 
has revealed that the effect size is small. This means that the effect size is 
not very pronounced, and any observed changes in the data are likely to 
be minimal. 

5. Conclusions 

In this contribution the analyses of the collected data from an air 
quality sensor measurement system for PM monitoring is presented. The 
used WSNs system enables collection and monitoring of air quality 
related data. The collected data can be further processed in order to 
evaluate the influence of green areas on PM concentration. In this paper, 
specific statistical tools are used to perform the required analyses. 

The measurement results collected from the sensor system for a 
period of three years indicate that particular matter concentrations tend 
to be lower in the area near to the green zones. Therefore, it can be 
concluded that the position of the sensor nodes plays an important role 
when the PM concentration is concerned. The measured values of PM10 
concentration are lower at Node 2 (which is located in the building 
patio), while the average PM2.5 concentration for the analysed period is 
slightly lower at Node 1 (compared to Node 2) during the summer 
months 2020 and 2022. For the first analysed period, summer months in 
2018, the PM2.5 and PM10 concentration are lowest at sensor node 3′, 
which is located close to the green area, while the PM2.5 and PM10 
concentrations are highest at sensor node 1’, which is positioned close to 
the parking place. 

During the Covid-19 pandemic higher pollution during the night 
hours was not detected. Even more, the PM concentration was signifi-
cantly lower during night time. The strongest correlation between 
PM2.5 and PM10 concentration and the wind speed is confirmed. Also, 
the negative correlation between the PM concentration and wind speed 
for all three locations is verified. Similarly, insignificant correlation 
between PM concentrations and the actual temperature, and slightly 
stronger correlation between the PM concentrations and the real feel 
temperature is reported. Insignificant correlation is noticed between PM 
concentrations and the pressure, and between PM concentrations and 
the humidity. 

From this research, it can be concluded that few factors have sig-
nificant influence in the reduction of PM concentration during the 
analysed period. During the COVID-19 lockdown period lowest values of 

Table 4 
Descriptive statistics for the period 15th June – 14th October by year, for: i) the 
whole measurement period, ii) daytime (8 a.m.–8 p.m.), and iii) night-time (8 p. 
m.–8 a.m.).   

PM2.5 PM10 

2018 2020 2022 2018 2020 2022  

Mean i) 5.04 4.35 4.45 6.33 6.06 6.37 
ii) 4.04 3.89 3.97 5.54 4.91 5.79 
iii) 5.73 5.42 4.93 7.19 6.81 6.95 

Maximum i) 15.27 84.60 23.00 18.53 134.80 47.70 
ii) 14.27 13.56 15.50 17.23 26.35 29.95 
iii) 15.27 84.60 23.00 18.53 134.80 47.70  

Table 5 
Results from Mann-Whitney U test for hypothesis Ha0.   

Z value for PM2.5 Z value for PM10 Number of observations N 

2018 − 13.343 − 14.189 1581 
2020 − 8.767 − 8.740 2299 
2022 − 8.353 − 7.934 2258  

Table 6 
Results from pairwise Mann-Whitney U test for hypothesis Hb0.   

Z value for PM2.5 Z value for PM10 Number of observations N 

2018–2020 − 12.06 − 7.398 3880 
2018–2022 − 10.542 − 3.030 3837 
2020–2022 No difference − 4.601 4555  
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PM concentrations are measured, while in 2018, before the pandemic, 
the highest values of PM concentrations are observed. The green areas at 
the Faculty patio, the reduced traffic of vehicles and the reduced 
mobility of the faculty staff, have high impact in the reduction of PM 
concentration. 
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