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pliers of Beurling and Roumieu tempered ultradistributions and we give
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1. Introduction

In [Z0] and [6] convolution operators and multipliers of the space S were
studied by L. Schwartz and J. Horvath. Later, G. Sampson, Z. Zielezny, [[9],
[23] characterized convolution operators of the spaces K, p > 1. D. H. Pahk,
[15] considered convolution operators in K. Topological structure of the spaces
of multipliers and convolutors in K/, was studied by S. Abdulah, [i].

H. Komatsu in [0] was the first who gave a systematic approach of the spaces
of ultradistributions, using sequence (M,), satisfying certain conditions. There
is another approach with weight functions, which is used by C. Fernandez, A.
Galbis, M.C. Gémez - Collado, in [3], [@], [6]. The convolution in ultradistribu-
tion spaces were considered in [7] by S. Pilipovié¢, A. Kaminski, D. Kovacevié,
while convolutors in the spaces of ultradistributions were investigated in [2],
@, [S], [12], (18], (7], (1]

Our main interest in this paper are convolutors and multipliers in the space
of tempered ultradistributions of Beurling and Roumieu type and their charac-
terization. To motivate the research on convolutors let us consider the following

example:
o0

Let P(D) = > a.D* (with suitable assumptions on coefficients), then
|a|=0
the equation P(D)u = v can be rewritten in the form P(0) * u = v. Hence,
considering equations of the type S % u = v one generalizes the concept of
ultra differential operators with constant coefficients. In order to consider such
equations, S must be an ultradistribution that has well-defined convolution
with elements of SM») resp. STMr},
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The paper is organized as follows: Section 2 contains notation and basic
definitions. Section 3 is devoted to the space of convolutors. The novelty is that
we give structure theorems for the space of convolutors in the Roumieu case,
as well as the completeness of OgMp), resp. OgM” b In Section 4 we consider

the space of multipliers OEVZ[VI”), resp. O}{V[M”}. Characterization theorem for
the space of multipliers in Roumieu case is given. The Fourier transform gives
a topological isomorphism between the space of multipliers and the space of
convolutors in Roumieu case.

2. Notation

The sets of non-negative integers, natural, real and complex numbers are
denoted by No, N, R, C. We use the symbols for z € R™: (z) = (14 | z |?)/2,
D* = D' ...Dgr,  DJ7 =i7'9% [0x® , o = (a1, 9,...,an) € N§. With
7, we will denote translation by z, i.e. 7, f(t) = f(t + ).

By M,, we denote a sequence of positive numbers. The following conditions
on this sequences will be assumed (see [d]):

(M.1) (Logarithmic convexity)
Mg < Mp*lMp+17 pe N7
(M.2) (Stability under ultradifferential operators)

M, < AH? min {M,_ M.}, p,q € Ny, forsome A, H>0;

0<¢<p

(M.3) (Strong non-quasi-analyticity)

o0

M,_ M,
Pl < pg—9%  g€eN.
p=q+1 p Mg+

(M.3)’ (Non-quasi-analyticity)

Jj=1

and a strictly weaker condition (It is even strictly weaker than (M.3)’):
(M.3)* (Strong non-quasi-analyticity of the square)

e e} 2 1 2
]\22 SAquq , ¢€N.
p=qg+1 P q+1

We always assume that My = 1.
So, M, = p!?, 0 > 1, satisfies conditions (M.1), (M.2) and (M.3)*.
The so-called associated function for the sequence M, is defined by

P
M(p) = sup {log, M}’ p>0.
pENp P
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In the sequel, we discuss compactly supported ultradifferentiable functions.
We assume (M.1), (M.2) and (M.3)’. For the definitions and properties of the

spaces DKPT,D( ») D{M} DMp)
DMy },5(M ,E1My } we refer to [d].
If f € L! then its Fourier transform is defined by

(FNEO=F© = [ e fla)dn, ¢ R
By R is denoted a set of positive sequences which increases to infinity. If

rp, € ¥ and K is a compact set in R™ then D{ ”}
functions ¢ on R™ supported by K such that

is the space of smooth

(p)

e\ (z n

el &,r, = SUP{%; peNp, € K} < oo,
P

|p|

where N, = M,, [[ i, p € N§. Clearly, this is a Banach space. It is proved
i=1

n 0] that

(M} . M
D"’ = proj Tl;g}eDKf;p
If @ C R™ is a bounded open set and r > 0, resp. 1, € R, we put

DY) = ind Jim Dy*, Dg,, =ind Jim I

The associated function for the sequence NV, is

Ny, () = supflog,. 2 peNo), p>0.
P
Note, for given r, and every k > 0 there is pg > 0 such that
(2.1) Ny, (p) < M(kp), p> po.

With conditions (M.1), (M.2) and (M.3) we define ultradifferential opera-

tors. It is said that P(§) = Z as€”, & € R", is an ultrapolynomial of the
aeNg
class (M), resp. {Mp}, whenever the coefficients a, satisfy the estimate

(2.2) | ao |< CLYM,, o€ Ng,
for some L > 0 and C' > 0 resp. for every L > 0 and some Cp > 0. The

corresponding operator P(D) = Y aoD* is an ultradifferential operator of
the class (M,) resp {M,}.
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Assume now (M.1), (M.2) and (M.3) and put

2
ey = 1t 16P) TT (14 155, resn

(2.3) pen” X
Py© =t 6P I (14 12h) ceom

peEN® pp

where m, = M,/M,_1 and r > 0 resp. r, € R. Conditions (M.1), (M.2) and
(M.3) imply that P resp. P, is an ultradifferential operator of the class (1))
resp. of the class {M,} (see [d]). The following estimations

‘ PT(E) ‘2 eM(T‘va g € Rn7
(2.4)
| Prp(f) > eNrp(IEI), £ e R",

will be used. Assume (M.1), (M.2) and (M.3). We denote by SM (RM), m >
0, the space of smooth functions ¢ which satlsfy

Pta(g (q) 1/2
(2.5) 0m2 Z / m 90 ‘ dz) < 00,

p,qENgG

supplied with the topology induced by the norm o, . If instead of 2 we put

p € [1,00] in (ZH) one obtains the equivalent sequence of norms o, ,, m > 0.
The spaces S’ M) and §HMe} of tempered ultradistributions of Beurling

and Roumieu type respectively, are defined as the strong duals of the spaces

SM») = lim proj,, ,..Sa»™(R™) and S} = limind,,_0S, "™ (R™),

respectively. The common notation for symbols (M,) and {M,} will be x.

All the good properties of S* and its strong dual follow from the equivalence
of the sequence of norms o, ,, m > 0,, p € [1, c0] with the each of the following
sequences of norms ([I3]), ([2]) :

(a) Omp, m>0, pel,o0]is fixed ;

(b) $m,p, m >0, p € [1,00] is fixed, where

Sm,p(p) 1= Z

o,BENG

m* PPl
M Mz '

m® [l eMmIp

(¢) Sm, m >0, where s,,(p) := sup ;
aeNg Moz
o

In [2] it is proved that

SMe} — proj lim SM

rl s
ri,5; ER i’
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where

Sa{\:{gj ={p € C™(R"); Yri,s; (¢) < oo},

and

()P | oo
rYT“Sj ((p) = { }
P,qXGI:\Ig (1= ri)Mp(ngl sj) M,

Note that F : §* — S* is a topological isomorphism and that the Fourier
transformation on S’* is defined as usually.
3. The space of convolutors

Assume (M.1), (M.2) and (M.3).
The space of the convolutors O, of S is the space of all S € §’* such
that the convolution S * ¢ is in &*, for every ¢ € §*, and the mapping

p—>S*p, 8" — 8" is continuous.

We recall from [['7] several results.

Proposition 3.1. If ¢ € S* and S € 8" then,

(Sxp)(x) = (S(t), p(z — 1)), R,

s a smooth function which satisfies the following condition:
There is k > 0, resp. there is k, € R, such that for every operator P of
class * and p € S§*

P(D)(S*p)(z) = O(eM(’“‘m|)),| T |— 00, resp.
(3.1)
P(D)(S*p)(z) = O(eN’“P(‘zD), | z |— 0.

From the definition, we have that for S € O the mapping
T—S«T, & =8, iscontinuous.
Proposition 3.2. Let S € 8'*. The following statements are equivalent.
a) S is a convolutor.
b) For every ¢ € D*, Sxp e S*.
¢) For every r > 0, resp. there exist k > 0
{MTlEDS(- — 2); z € R} resp.

{MEDS( —a); 2 € R,

is bounded in D'*.



6 Pavel Dimovski, Bojan Prangoski, Daniel Velinov

d) For every r > 0, resp. there exist k > 0, there is | > 0, resp. there is
ky, € R, and L™ functions Fy and Fy such that

S = P(D)F| + Fy, resp. S= P, (D)F+ F,
and
M| Fy(2) | + | Fa(z) |z < oo
resp.

leM M=V Fy(e) |+ | Fa(x) )z~ < oo

Proof. We will prove only Roumieu case. Beurling case is similar.
a) = b) It’s obvious.
b) = ¢) Let ¢ € D*.

<eM(k|mDTxSt,<p(t)> = <€M(k‘m|)5t7%0(t +x)) =
= M (5 4 ) ()
¢) = d) For this part we will need the following lemma of H. Komatsu [IT].

Lemma 3.3. Let K be a compact neighborhood of zero, r > 0, and r, € R.

(M)

i) There are u € Dy, b

5 and P € D%Mp) such that
(3:2) Pr(Dyu=6+1,
where P, is of form (Z23).

it) There are u € C* and ¢ € DE(M”} such that

(3.3) P, (D)u=0+1p,

{ 0%u(z)]

ol }—>0, la] = o0,
Hj:l rj Ma

(3.4) suppu C K, sup
rzeK

where P, is of form (223).

Let © be a bounded open set in R™ which contains zero and K = Q. Let
B be a bounded set in D}M”}. For p € B

(3.5) | (MM 7,5, o(t)) |= eMED | (5% @) (—a) < C,

for all x € R™ where C' > 0 does not depend on ¢ € B. Denote by L}zr{:p(—M(kH))

the space of locally integrable functions f on R™ such that f(-)e=M*ID) ¢
L'(R™). We supply this space with the norm

IFI 2t eap(—nrep-yy = I F (e MED) L
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Let By be the closed unit ball in the space L}mp(_M(k'.D), P € By NDWMe} and
@ € B. Then,

(3.6) | (S, 0) [=| (S * @) (=), ¥) [<
<1 * p(=x) - eMFD|| poo Nl L1 eap—nrr-) < ClYI Lt eap— i) < C-
Hence
(3.7) | (S, 0) |< ClYll L1 eap(— el
for all ¢ € B and ¢ € DIM»}, From (BB) it follows that

{S x| ¢ € By nDIMr}}

is bounded set in D/IEMP}, and because D/}M"} is barrelled, the set is equicon-
tinuous. There exist k, € # and € > 0 such that

| (S*6,9) |< 1,9 € BInDWM} 0 eV (o),
where
(3.8) Vi, () = {x € D Ixllien, <}

The same inequality holds for the closure Vj (g) of Vi, (¢) in D}g{fp}. If 6 €
DS{){\;{Z}, then for some Ly > 0, ||6/Lollxr, < €. Hence 0/Ly € Vi (¢) and
| (S%6,9) |< Ly, for 1 € By N DM} Tt follows that for ¢ € DM}

(3.9) | (S % 0,9) |< Lol ¢l Lt cap(—n (ki 1)) -

Because D{Mr} is dense in Lixp(—M(k\‘l)) it follows that for every 6 in Délﬂ;c[i},

S % 0 is a continuous functional on Lizp(fM(kH))' Thus S * 6 belongs to

L2ty = U € Luoe | [1F()eMEIV]| L < oo}, since the space L2, ey
is the dual of the space Lixp(—]\/l(k\~|))' Hence,

S * a(x)HL‘X’,exp(M(H'D) < Ly,

where Ly > 0 is a constant which depends of . From Lemma B3 for the chosen
ky, € R and Q there exist k, and u € Dé{\;f‘;} and ¢ € Dg{sz} such that

S = Py, (D)(w8) + (4+5).

Now it’s obvious that F; = u S and Fy = ¢ % S satisfy the conditions in d).

d) = a) We will assume that F» = 0. The general case is proved analogously.
It is enough to prove that ¢ —» F % ¢ is a continuous mapping from S{M»r} to
S{Mp}, Then a) will hold because of the continuity of the operator Py, (D) and
the fact that Py, (D)(S *¢) = Py, (D)S * . Let us observe that the continuity
of the mapping ¢ — F x ¢ will follow if we prove that for every r which is
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bigger than some fixed rg, there exist [ such that ¢ — F'* ¢ is a continuous
mapping from Sé‘f”” to Sé\g”’l (because S1Mr} is a inductive limit of Sé‘f””).
For the k in the condition d) we choose rg, small enough such that for all » < rq
the integral

/efM(k\tl)eM(rlt\)dt

Rn
converges. We fix 7 such that r < rg. Note that
rPlx|P  rPle—t|P  rP|t|P

3.10
(3.10) wM, — M, M, ~

< Mrla—th) | Mrlt]) < goM(rlo—t]) M(rt])

and the last inequality holds since the function M (p) is nonnegative. For the
associated function there exist pg > 0 such that for p < pg, M(p) = 0 and for
p > po, M(p) > 0 (for the properties of the associated function we refer to [d]).

2
If |z |> % then from the inequality (BM) it follows that

MGlel) < 9 M(rla—t) Mrlt])

If |z \< , there exist ¢ > 0 such that M (312} < ¢. Hence, it follows that
T
for all z € R“, the following inequality holds

eM512) < 9 4 1) Mrle—th Mritl)

and we get
e~ Mrlz=th) < M rith =M (zlal)

where we put C' = 2(c¢+1). Let I < r/4. Then,

< - « _ xr —
= <ar [ 1F@ 1 D% -0 | die

eM(k|t]) M rlo—t)
/ | F eM (k[t]) | D%p(z —t) |7amdteM(l|w|) <

< C/(,)“&((p) /67M<k|t\>eM<r|t|>dt67M<g|m|) MUlal).
- T
Because of the way we choose [, it follows that

1| | F x D¥p(x) | MUV
M,

si(F'x @) = sup < C"s:(9),

«
where C" is a constant which does not depend on ¢. We have shown that
@ — F'x is a continuous mapping from ST o St Hence, ¢ — F'x ¢
is a continuous mapping from S{Mr} to STMr}, O
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It is clear that the ultratempered convolution of S, So € O is in Of (see

[@]). Also for any T' € 8", and ¢ € S* we have
(3 11) <(51*S2>*T7¢>:<51*Ta52*1/}>:
' = (T'% 85, 51 ) = (T, (S1 % 82) % ).

We supply Og with the topology from L¢(S*,S8*) and denote it by Og .
The same topology on this space is induced by Lg(S"™,8"").

Proposition 3.4. The strong topology on L(S"*,8"*) induces the same topology
on OF.

Proof. Let U be a neighborhood of zero in 8. Without loss of generality we
can assume that

U=U{V"B)={Se€0(8*8)|S«T eV, forall T € B'},

where B’ is bounded subset in &’* and V' is a neighborhood of zero in ™. We
can assume that

V' =V'(B,e) ={T € S8™| | {T,¢) |< e forallp € B},
where B is bounded in §*, and € > 0. Let
V={peS*| |(T,¢)|<eforalT e B'}.

Since S* is barreled is follows that V is a neighborhood of zero in S*. Witl}out
loss of generality we will assume that B = B = {¢ | ¢ € B} and B’ = B’ =
{T'| T € B'}. Let

W =W(V,B)={S € O&(S8";8™)|S«p €V forallp € B}.

We will show that W(V,B) C U(V',B’). Let S € W(V,B), T € B' and ¢ € B.
Then 5
[ (S*T, ) [=[ (T, S x ) [<e.

Hence S*T € V' for all T € B’. We have shown that the topology induced by
Ly(8™*,8™) is stronger than the topology induced by Ls(S*,8*). The other
direction is similar and will be omitted. O

Proposition 3.5. 0’0*73 is complete.

Proof. Let {S,} be a Cauchy net in OZ . Then {5,} is a Cauchy net in
L(S8*,8*), where S’u : 8* — 8* are induced continuous linear operators by
Sy, S'H(cp) =S, * . Since §* is complete and bornological [22], Corollary 1 of
Theorem 32.2, L (S*,8*) is complete, there exists R € Ls(S*,S8*), such that
S, — R. We define T € 8" by (T, ¢) = R()(0). For ¢ € S*, R(p) = T * ¢,
since for x € R™

R(p)(w) = 1im(S), * ¢)(w) = Lm(S, * (ra))(0) =
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= R(129)(0) = (T 7o) = T'* p() .
Thus for ¢ € S*, T'x ¢ € §* and the map ¢ — T * ¢ is continuous. It follows
that T € O¢, and moreover S, — T in O since T' = R. O

Proposition 3.6. A sequence S, from O'Ci"s converges to zero in O’(}"S if and
only if for every k > 0 resp. there exist k > 0, there exists r > 0, resp. there
exists k, € ¥ and sequences of L™ functions Fi, and Fa,, such that

(312) Sn = PT(D)Fln + F2n7 resp. Sn = Pkp(D)Fln + an,
F1n7F27L S O'(}k;
e FD(| Fyy |+ | Fan Dll= < 00

and
(3.13) Fip —0, Fy —0 in O¢, ,

Proof. The proof of the proposition is similar to the proof of the Proposition
B2, but we will give it for completeness. Let S, be a sequence in O/C{M” }
which converges to zero in Ogg/f”}. Let 2 be a bounded open set in R™ which
contains zero and K = Q. Let ¢ € D%M’)} be fixed. Then S, x ¢ — 0 in
StM} Because SIMr} is a (DFS) space, it follows that there exist k& > 0 such
that S, x ¢ € Solg”’k, and is bounded there, i.e.

k|eM D D (S, # ) (@) ]|

sgp R <Cp,VneN,

where C, is a constant which depends only on ¢. We get
1M FD (S, % ) ()| < Cp,¥n €N
Let ¢ € B; N DM} then

(3.14) | (Sux 0, =1 (S % 0.0) < S0 * el ) < Cors

for all n € N, where Bj is the closed unit ball in Lézp(—M(k|»|))'

From (BT4) it follows that
{Sn x| ¥ € BynDWMe} n e N}

is weakly bounded set in D'IEMP}, and because DLMP} is barrelled, the set is
equicontinuous (see [20], Theorem 5.2). There exist k, € R and § > 0 such
that

| (Snx0,0) [<1,0€ Vi, (5), € BLnDM} neN,

where V, (0) = {x € DEM"}\ x|l ,k, < 6}. The same inequality holds for

the closure Vj, (0) of V4, (0) in DQ{C’;}_ If o e Dg‘iz}, then for some Ly > 0,

10/ Lo ||k, < 6, hence 0/Lg € Vi, (5) and

| (Sp % 0,9) |< Lg, v € BLNDIM} pneN.
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It follows that for ¢ € D{M»}
(315) | <S’ﬂ * 9, ’J}> |§ L@”w“lzl,ezp(—]\/[(k‘.”) .

Because D{M»} is dense in Lémp(—M(kH))’ it follows that for every 6 in Dé{\i’;},

Sy, * 0 are continuous functionals on Ltlza:p(f M) and uniformly bounded.

Thus S,, * § belong to L (M(k]-]))" Hence,

erp
||Sn * 9(I)|‘Loo7ewp(M(k‘.|)) < Lg,VYn e N,

where Ly > 0 is a constant which depends on 6. From Lemma B33, for the
chosen k, € R and (2, there exist k:;, and u € Dg\zz } and P € DéMp} such that

Sn = Pg (D)(Sn *u) + (Sn *1)).

Let Fy, = S, *xu and Fy, = S, *x 1. It’s obvious that u € OgM”}, hence

Fin, Fop € OMMY F =S, 5w —> 0 and Fy, = S, %) — 0 in O4M#)
Conversely, let F,, — 0 and Fy,, — 0 in OgM"}, Sn = Py, (D)Fy + Fip,

for some k, € R. We will assume that Fy, = 0 for all n € N. The general

case is proved similarly. Let M(B,V) be a neighborhood of zero in OgMp},
where B is a bounded set in S1™»} and V is a open neighborhood of zero in
SMe}. Since, Py, (D) : StMr} — SIMe} is continuous, there exists an open

neighborhood V such that Py (D)(Vp) C V. Since F,, — 0 in OgMp}, and
M (B, V) is a neighborhood of zero, there exists ng, such that for all n > ng,
F, € M(B,Vy). Thus, F,, x ¢ € Vp, for all ¢ € B and n > ng, and it follows
that

Pr, (D)(Fy * ) C Py, (D) (Vo) C V.
O

Remark 3.7. The inclusion O/c*,s — 8™ is continuous. Let V be a open neigh-
borhood in §™. Let us consider this neighborhood of O¢::

W={SeOs|Sx5eV}.

Then it is obvious that from S € W follows that S € V. We get that, from
the convergence of Fi,,, Fb, to zero in O in the above proposition follows the
convergence in 8.

We denote by £S’" the space of elements f from S'* such that for every
Se0f, S+ fe&* and the mapping

S — S« f, Of,— £*is continuous.

Proposition 3.8. (i) £§8'* Cc £* NS
(ii) If f € ES”" and S € O then S« f € ES'".
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Proof. (i) It’s clear from the definition of £8'" that if f € £S’", f € S&’* and

because § is in Og{Mp} we obtain 0 x f = f is an element in £*.
(ii) From (i) it follows that S* f € 8. Let T' € OZ. We have that

Tx(S+xf)=T*S)«f

is in £*. It’s obvious that the mapping T — T % (S  f) is continuous, since
the mappings T — T xS — (T *S) x f =T % (S * f) are continuous. Hence,
Sxfe&S”. O

Note that S* is subset of £S'*.

4. The space of multipliers

Again we assume (M.1), (M.2) and (M.3).
As in 7] and [06] , we define O}, as the space of functions ¢ from £* such
that ¢ € O3}, if and only if

for every ¢ € §*, p1p € §* and the mapping
(4.1) Y= e, S — §* is continuous .

From the definition, we have that for ¢ € O}, the mapping
T— T, S8 —8", iscontinuous.
In the proof of the next proposition we will need the following function:

Mz )

(4.2) P(x

j=1
where the function p € DIMr} with values in [0, 1], such that
suppp C {z | |z| < 1,z € R"}, p(x) =1,

for z € {z] | # |< 1/2}, and {x;} is a sequence of real numbers such that
|.Z‘j |> 2 and ‘ Tj+1 |Z| T; | +2, 7 € N.
Since p € DM} there exist h and C such that sup | D*p |< Ch*M,. We

k
H4/2

1
will show that 1» € S{M»}. We choose r such that rh < 5 and r <

|z |

Using that < 2, we have,

| z; |
r2ot28 ()20 | Dy(x) |?
M2M?

dx
avBRn
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< > r206+2,3< >2ﬁC2h2aM§
—ZZ M§M§e2M(k\r]\) dx

@B I g—ay|<1

7.2Oé+2,3 <x>2,3 02 h2a

<> / MZe2M ;D du

a,B le\m—mj |<1

0 T2ar2626 | T ‘2,@ C2h2a
S [ ey

o, jzl\'p—r<\<1
(rh)% r\[)zﬁ 5
B
<oy > Gnndy [ e
a,f j=1 lz—z;]<1
(rh)% r\[)25|m |26

<Gy ZZ M262M(k\z]\)

a,B j=1

(rh) 20 1”2[ 28 | &5 |28 M2
<C, ZZ . ) | J ‘ B+1
M k2642 | z |25+2

a,B j=1

e 2rv2H 1
()

| z;

2_
aﬁjl |

The proof of the next proposition in (M),)-case is given in [[Z] and [I6].

Proposition 4.1. Let ¢ € C*°. The following statements are equivalent.

(i) p € O}y
(ii) For every h > 0, resp. for every k > 0, there exist k > 0, resp. there
exist h > 0,
hozH@fM(k|~|)<p(a)||Loo

sup { < 0.
a€eNg Ma

(iii) For every ¢ € 8* and every r > 0, resp. for some r > 0.
Gm,w(@) = O'm,oo(ﬂ}@) < o0
(i) In Roumieu case, for every v € SUMe} and for every ry, s; €R
'YTi,sJ-,w(QD) = Triys; (WP) <0
Proof. We will give the proof only for the Roumieu case.
(i) (iv) it’s obvious. We will prove (iii)= (ii)=(i)=-(iii).
(iii)=-(ii) First we will prove that ¢ is in £{M»}. Let K be a fixed compact set in

R™ and take y € DIMr} | with values in [0,1] and x(x) = 1 on a neighborhood
of K. Then there exist r such that

relD*(p(@)x (@)l L= x0)
sup Vi <
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re[|eM =) D (p () x (@) | e (e
M,

We have D®(¢(z)x(z)) = D*p(z) for z € K. Thus ¢ € E1Mp},
Let (ii) does not hold. Then there exist k such that for all n € N,

) Csr(px) < 00.

< sup
«

le”M*EN Do (@) || _
sgp ol =00.

Since ¢ € EMp} for every compact set K, there exist C and ng € N such that
forn > ng

oo e M D D (@) o e
o n*M,

Hence, we can choose a; and xj, where | ;41 [>] z; | +2, such that

)<C'n2nK.

e~ M(klz)) | D% p(z;) | > 1
J4 M, -

Now take 1 as in (E2), where we take k and the sequence {z;} to be the ones
chosen here. Then o1 € SIMr} e, there exist [ such that

o M(k|x|)Da -
ap IOl _

Then there exist jg such that for all j > jg, I > 1/5.

up LMD D (@) i) o

e Ma B
1M | Do ol a) |
= M, -

J
M(l)x; j .
S Le (exj) | Daj(p(.’lfj) | > eM(l\ij .

= MG,

This implies that o is not in Sﬁfp’l, which is a contradiction with the above
assumption.
(ii)=(i) From the condition (ii) it is obvious that ¢ € £1Mr}. Tt is enough
to prove that for every r > 0 there is [ > 0 such that the mapping ¢ — @y
for S to St is continuous. Let r > 0 be fixed. Put k = r/4. By (ii),
there exist h such that
h*|le” M) DY p(2) || L

sup < 0.
[e3 MD(

Ifl <h/4 and I < r/4, then

1|l =) D (p () (@)L= _
M, =
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<Y (a) 19 M=) DB () D Pop() ||

BLla B Ma*ﬁMﬁ
o\ (20)e|eM Uz DB ()M (Kl M (Klzl) p s
-2 |

DBy ()Ml =Ml 0By

’I“O‘_’HMangﬁ -
1 /20N\B /2l\o—8
< Oy () e~ MOTDMED MU 5 (;) =(3) ) =osw.
BLa
where the last inequality holds because of the way we choose [.
(i)=(iii) it’s obvious. O

Remark 4.2. It’s obvious that if ¢ € O3, then ¢ € ™.

Denote by L(S*,S*) the space of continuous linear mappings from S* into
S*; O3 is its subspace. With Ls(S*,8*) we denote the space L(S*,S*) with
the strong topology. We can also equip O}, with the topology induced by
Ls(8*,8™). Similarly as in Proposition B4 we can prove that the topologies
induced by Ly(S8*,8*) and Ls(S™,S™) are the same. The space O3, equipped
with this topology is denoted by O, ..

Proposition 4.3. The Fourier transformation is a topological isomorphism of
O}y onto OC. .

Proof. We only show the Roumieu case. Using Proposition B2 d), there exist
k > 0 and there exist k, € R such that S = P, (D)F + Fi, where I and F
satisfy the growth condition given in Proposition BZ2. Without loss of generality
we may assume that F; = 0. By (M.2) we obtain the following estimates for
the derivatives of the Fourier transform of F"

(4.3) | DCF(F) |=| F(z°F) |= \ / ) e*mﬁxaF(I)d;@] <

g/ |z |*| F(z) | de < cl/ | & |* e MEleD gy <

n

|I|04 c |a|+n+1 He |a|+n+1
=G / o {ayatmet Matnit () dr < CMu Mo (57) :

In ([9]), page 88, the following estimate of the analytic function Py, (¢) is given:
For every L there is C' such that

| P, (Q) |[< ACeM(VPEHIC) ¢ e Cm.

Using this and the Cauchy integral formula, we obtain that for every L > 0
there exist C' > 0 such that

! /
(4.4) | D Py, (§) < O - MKD,
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where ¢/ > 0 is a constant that does not depend on L. It is also known that,
for every m > 0,

mFk!
My,
Let m > 0 be arbitrary. Let L be a constant such that

e~ MmIEDMLIED ) | < o0,

(4.5) — 0 as k— o

and h is chosen such that 2h < 1 and 2hHc¢ < k. From (E3), (£32), (E3H) and
(M.1) we obtain,

he =MD D (P, () F (€))L

p

sup
[e% «

<op Y (© (2h)*[je= MmN DB P, (€) DPE ()|
= B 2Ma—pMp

1 ,
< Csup e MMM EIED .

a\ (a—p) g (HeylBlHn+1
2 (5) Me_pde=F Mo (21) ( k )
B<a
/ 1 a\ /2hHecy 18]
—M(m[¢]) oM (Lc[€]) —
< Crusup e ¢ =5z 2 (5)( )

B
< Cylle MmIED MLIED || o < .

By Proposition B0 (ii), it follows that S € O}{VIMP b and it is obvious that the
mapping S — S is injective.
Now we will prove that the Fourier transform from O}{MMP} to OgM‘”} is an

injective mapping. Let ¢ € OJ{V[M”} and ¢ € StM»}, The mappings

~ 1\ ~
b=y — o — Fe) = (52) ¢+

are continuous from StMr} to SIMr}. Hence, ¢ € OgM"} and the mapping

p — ¢ is injective from O}WMP} into O/C{VM’)}. Now it’s enough to see that the
same things hold for the F = (2m)"F ! and the fact that F is isomorphism on
SIMp} and S/tMr} with an inverse F~'. Because F : S* — S* is a topological
isomorphism it’s obvious that it is also a topological isomorphism from O}
to O¢ . O

Proposition 4.4. The bilinear mappings
Ops XS = 8%, (a,9) — ay,
Oips x 8" =87, (a.f) = af,

are hypocontinuous.
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Proof. 1t is obvious that the bilinear mappings are separately continuous. We
will prove only that the mapping T': O}, , x §* — S§*, defined by T'(p,v) =
w1 is hypocontinuous. Since S* is barrelled space, from [20] Theorem 5.2., it
follows that for every open set V in §*, and every bounded set B in O} g,
then there is an open set W in &* such that T(B x W) C V. Now, let V] is
arbitrary open set in §* and let B; be a bounded set in §*. Then, for the open
set Wy in O}, where W1 = {¢ € Oy, |y € V, forall ¢ € B}, we have
T(W1 XBl)Cvl. O

Proposition 4.5. The space O}, , is nuclear.

Proof. Since the space S* is reflexive and the space S’* is nuclear, from [20] it
follows that Ls(S*,S*) is nuclear space. Thus, the space O3, is nuclear as a
subspace of a nuclear space. O
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