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Abstract. We consider the space of convolutors and the space of multi-
pliers of Beurling and Roumieu tempered ultradistributions and we give
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1. Introduction

In [21] and [6] convolution operators and multipliers of the space S were
studied by L. Schwartz and J. Horvath. Later, G. Sampson, Z. Zielezny, [19],
[23] characterized convolution operators of the spaces K′

p, p ≥ 1. D. H. Pahk,
[15] considered convolution operators in K′

e. Topological structure of the spaces
of multipliers and convolutors in K′

M was studied by S. Abdulah, [1].
H. Komatsu in [9] was the first who gave a systematic approach of the spaces

of ultradistributions, using sequence (Mp), satisfying certain conditions. There
is another approach with weight functions, which is used by C. Fernández, A.
Galbis, M.C. Gómez - Collado, in [3], [4], [5]. The convolution in ultradistribu-
tion spaces were considered in [7] by S. Pilipović, A. Kaminski, D. Kovačević,
while convolutors in the spaces of ultradistributions were investigated in [2],
[7], [8], [12], [16], [17], [18].

Our main interest in this paper are convolutors and multipliers in the space
of tempered ultradistributions of Beurling and Roumieu type and their charac-
terization. To motivate the research on convolutors let us consider the following
example:

Let P (D) =
∞∑

|α|=0

aαD
α (with suitable assumptions on coefficients), then

the equation P (D)u = v can be rewritten in the form P (δ) ∗ u = v. Hence,
considering equations of the type S ∗ u = v one generalizes the concept of
ultra differential operators with constant coefficients. In order to consider such
equations, S must be an ultradistribution that has well-defined convolution
with elements of S(Mp) resp. S{Mp}.
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The paper is organized as follows: Section 2 contains notation and basic
definitions. Section 3 is devoted to the space of convolutors. The novelty is that
we give structure theorems for the space of convolutors in the Roumieu case,

as well as the completeness of O
′(Mp)
C , resp. O

′{Mp}
C . In Section 4 we consider

the space of multipliers O
(Mp)
M , resp. O

{Mp}
M . Characterization theorem for

the space of multipliers in Roumieu case is given. The Fourier transform gives
a topological isomorphism between the space of multipliers and the space of
convolutors in Roumieu case.

2. Notation

The sets of non-negative integers, natural, real and complex numbers are
denoted by N0,N,R,C. We use the symbols for x ∈ Rn: ⟨x⟩ = (1+ | x |2)1/2,
Dα = Dα1

1 . . . Dαn
n , D

αj

j = i−1∂αj/∂xαj , α = (α1, α2, . . . , αn) ∈ Nn
0 . With

τx we will denote translation by x, i.e. τxf(t) = f(t+ x).
By Mp we denote a sequence of positive numbers. The following conditions

on this sequences will be assumed (see [9]):
(M.1) (Logarithmic convexity)

M2
p ≤Mp−1Mp+1, p ∈ N;

(M.2) (Stability under ultradifferential operators)

Mp ≤ AHp min
0≤q≤p

{Mp−qMq}, p, q ∈ N0, for some A,H ≥ 0;

(M.3) (Strong non-quasi-analyticity)

∞∑
p=q+1

Mp−1

Mp
≤ Aq

Mq

Mq+1
, q ∈ N.

(M.3)’ (Non-quasi-analyticity)

∞∑
j=1

Mp−1

Mp
<∞ .

and a strictly weaker condition (It is even strictly weaker than (M.3)’):
(M.3)∗ (Strong non-quasi-analyticity of the square)

∞∑
p=q+1

M2
p−1

M2
p

≤ Aq
M2
q

M2
q+1

, q ∈ N.

We always assume that M0 = 1.
So, Mp = p!σ, σ > 1, satisfies conditions (M.1), (M.2) and (M.3)∗.
The so-called associated function for the sequence Mp is defined by

M(ρ) = sup
p∈N0

{log+
ρp

Mp
}, ρ > 0.
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In the sequel, we discuss compactly supported ultradifferentiable functions.
We assume (M.1), (M.2) and (M.3)’. For the definitions and properties of the

spaces DMp

K,r,D
(Mp)
K ,D{Mp}

K ,D(Mp),

D{Mp}, E(Mp), E{Mp} we refer to [9].

If f ∈ L1 then its Fourier transform is defined by

(Ff)(ξ) = f̂(ξ) =

∫
Rn

e−ixξf(x)dx, ξ ∈ Rn.

By ℜ is denoted a set of positive sequences which increases to infinity. If

rp ∈ ℜ and K is a compact set in Rn then D{Mp}
K,rp

is the space of smooth
functions φ on Rn supported by K such that

∥φ∥K,rp = sup{ | φ
(p)(x) |
Np

; p ∈ Nn
0 , x ∈ K} <∞,

where Np = Mp

|p|∏
i=1

ri, p ∈ Nn
0 . Clearly, this is a Banach space. It is proved

in [10] that

D{Mp}
K = proj lim

rp∈ℜ
DMp

K,rp
.

If Ω ⊂ Rn is a bounded open set and r > 0, resp. rp ∈ ℜ, we put

D(Mp)
Ω,r = ind lim

K⊂⊂Ω
DMp

K,r, DΩ,rp = ind lim
K⊂⊂Ω

D{Mp}
K,rp

.

The associated function for the sequence Np is

Nrp(ρ) = sup{log+
ρp

Np
; p ∈ N0}, ρ > 0.

Note, for given rp and every k > 0 there is ρ0 > 0 such that

(2.1) Nrp(ρ) ≤M(kρ), ρ > ρ0.

With conditions (M.1), (M.2) and (M.3) we define ultradifferential opera-

tors. It is said that P (ξ) =
∑
α∈Nn

0

aαξ
α, ξ ∈ Rn, is an ultrapolynomial of the

class (Mp), resp. {Mp}, whenever the coefficients aα satisfy the estimate

(2.2) | aα |≤ CLαMα, α ∈ Nn
0 ,

for some L > 0 and C > 0 resp. for every L > 0 and some CL > 0. The
corresponding operator P (D) =

∑
α aαD

α is an ultradifferential operator of
the class (Mp) resp {Mp}.
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Assume now (M.1), (M.2) and (M.3) and put

(2.3)

Pr(ξ) = (1+ | ξ |2)
∏
p∈Nn

(
1 +

| ξ |2

r2m2
p

)
, resp.

Prp(ξ) = (1+ | ξ |2)
∏
p∈Nn

(
1 +

| ξ |2

r2pm
2
p

)
, ξ ∈ Cn,

where mp = Mp/Mp−1 and r > 0 resp. rp ∈ ℜ. Conditions (M.1), (M.2) and
(M.3) imply that Pr resp. Prp is an ultradifferential operator of the class (Mp)
resp. of the class {Mp} (see [9]). The following estimations

(2.4)

| Pr(ξ) |≥ eM(r|ξ|), ξ ∈ Rn,

| Prp(ξ) |≥ eNrp (|ξ|), ξ ∈ Rn,

will be used. Assume (M.1), (M.2) and (M.3). We denote by SMp,m
2 (Rn), m >

0, the space of smooth functions φ which satisfy

(2.5) σm,2(φ) :=
( ∑
p,q∈Nn

0

∫
Rn

∣∣∣mp+q⟨x⟩pφ(q)(x)

MpMq

∣∣∣2dx)1/2

<∞,

supplied with the topology induced by the norm σm,2. If instead of 2 we put
p ∈ [1,∞] in (2.5) one obtains the equivalent sequence of norms σm,p, m > 0.

The spaces S ′(Mp) and S ′{Mp} of tempered ultradistributions of Beurling
and Roumieu type respectively, are defined as the strong duals of the spaces

S(Mp) = limprojm→∞SMp,m
2 (Rn) and S{Mp} = lim indm→0S

Mp,m
2 (Rn),

respectively. The common notation for symbols (Mp) and {Mp} will be ∗.
All the good properties of S∗ and its strong dual follow from the equivalence

of the sequence of norms σm,p, m > 0,, p ∈ [1,∞] with the each of the following
sequences of norms ([13]), ([2]) :

(a) σm,p, m > 0, p ∈ [1,∞] is fixed ;
(b) sm,p, m > 0, p ∈ [1,∞] is fixed, where

sm,p(φ) :=
∑

α,β∈Nn
0

mα+β∥xβφ(α)∥p
MαMβ

;

(c) sm, m > 0, where sm(φ) := sup
α∈Nn

0

mα∥φ(α)eM(m·)∥L∞

Mα
;

In [2] it is proved that

S{Mp} = proj lim
ri,sj∈ℜ

SMp
ri,sj ,



Multipliers and convolutors in the space of tempered ultradistributions 5

where
SMp
ri,sj = {φ ∈ C∞(Rn); γri,sj (φ) <∞},

and

γri,sj (φ) :=
∑

p,q∈Nn
0

{ ∥⟨x⟩pφ(q)∥L∞

(
∏p
i=1 ri)Mp(

∏q
j=1 sj)Mq

}.

Note that F : S∗ → S∗ is a topological isomorphism and that the Fourier
transformation on S ′∗ is defined as usually.

3. The space of convolutors

Assume (M.1), (M.2) and (M.3).
The space of the convolutors O′∗

C , of S ′∗ is the space of all S ∈ S ′∗ such
that the convolution S ∗ φ is in S∗, for every φ ∈ S∗, and the mapping

φ −→ S ∗ φ , S∗ −→ S∗ is continuous.

We recall from [17] several results.

Proposition 3.1. If φ ∈ S∗ and S ∈ S ′∗ then,

(S ∗ φ)(x) = ⟨S(t), φ(x− t)⟩, x ∈ Rn,

is a smooth function which satisfies the following condition:
There is k > 0, resp. there is kp ∈ ℜ, such that for every operator P of

class ∗ and φ ∈ S∗

(3.1)

P (D)(S ∗ φ)(x) = O(eM(k|x|)), | x |→ ∞, resp.

P (D)(S ∗ φ)(x) = O(eNkp (|x|)), | x |→ ∞.

From the definition, we have that for S ∈ O′∗
C the mapping

T → S ∗ T, S ′∗ → S ′∗, is continuous.

Proposition 3.2. Let S ∈ S ′∗. The following statements are equivalent.

a) S is a convolutor.

b) For every φ ∈ D∗, S ∗ φ ∈ S∗.

c) For every r > 0, resp. there exist k > 0

{eM(r|x|)S(· − x); x ∈ R} resp.

{eM(k|x|)S(· − x); x ∈ R},

is bounded in D′∗.
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d) For every r > 0, resp. there exist k > 0, there is l > 0, resp. there is
kp ∈ ℜ, and L∞ functions F1 and F2 such that

S = Pl(D)F1 + F2, resp. S = Pkp(D)F1 + F2,

and
∥eM(r|x|)(| F1(x) | + | F2(x) |)∥L∞ <∞

resp.
∥eM(k|x|)(| F1(x) | + | F2(x) |)∥L∞ <∞.

Proof. We will prove only Roumieu case. Beurling case is similar.
a) ⇒ b) It’s obvious.
b) ⇒ c) Let φ ∈ D∗.

⟨eM(k|x|)τxSt, φ(t)⟩ = ⟨eM(k|x|)St, φ(t+ x)⟩ =

= eM(k|x|)(S ∗ φ̌)(−x) .

| eM(k|x|))(S ∗ φ̌)(−x) |≤ Csk(S ∗ φ̌) .

c) ⇒ d) For this part we will need the following lemma of H. Komatsu [11].

Lemma 3.3. Let K be a compact neighborhood of zero, r > 0, and rp ∈ ℜ.

i) There are u ∈ D(Mp)

K,r/2 and ψ ∈ D(Mp)
K such that

(3.2) Pr(D)u = δ + ψ ,

where Pr is of form (2.3).

ii) There are u ∈ C∞ and ψ ∈ D{Mp}
K such that

(3.3) Prp(D)u = δ + ψ ,

(3.4) suppu ⊂ K, sup
x∈K

{ |∂αu(x)|∏|α|
j=1 rjMα

}
−→ 0, |α| → ∞ ,

where Prp is of form (2.3).

Let Ω be a bounded open set in Rn which contains zero and K = Ω. Let

B be a bounded set in D{Mp}
K . For φ ∈ B

(3.5) | ⟨eM(k|x|)τxSt, φ(t)⟩ |= eM(k|x|) | (S ∗ φ̌)(−x) |≤ C ,

for all x ∈ Rn where C > 0 does not depend on φ ∈ B. Denote by L1
exp(−M(k|·|))

the space of locally integrable functions f on Rn such that f(·)e−M(k|·|) ∈
L1(Rn). We supply this space with the norm

∥f∥L1,exp(−M(k|·|)) = ∥f(·)e−M(k|·|)∥L1 .
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Let B1 be the closed unit ball in the space L1
exp(−M(k|·|)), ψ ∈ B1 ∩D{Mp} and

φ ∈ B. Then,

(3.6) | ⟨S ∗ ψ,φ⟩ |=| ⟨(S ∗ φ̌)(−x), ψ⟩ |≤

≤ ∥S ∗ φ̌(−x) · eM(k|x|)∥L∞ · ∥ψ∥L1,exp(−M(k|·|)) ≤ C∥ψ∥L1,exp(−M(k|·|)) ≤ C .

Hence

(3.7) | ⟨S ∗ ψ,φ⟩ |≤ C∥ψ∥L1,exp(−M(k|·|))

for all φ ∈ B and ψ ∈ D{Mp}. From (3.6) it follows that

{S ∗ ψ| ψ ∈ B1 ∩ D{Mp}}

is bounded set in D′{Mp}
K , and because D′{Mp}

K is barrelled, the set is equicon-
tinuous. There exist kp ∈ ℜ and ε > 0 such that

| ⟨S ∗ θ, ψ̌⟩ |≤ 1 , ψ ∈ B1 ∩ D{Mp}, θ ∈ Vkp(ε),

where

(3.8) Vkp(ε) = {χ ∈ D{Mp}
K | ∥χ∥K,kp ≤ ε} .

The same inequality holds for the closure Vkp(ε) of Vkp(ε) in D{Mp}
K,kp

. If θ ∈
D{Mp}

Ω,kp
, then for some Lθ > 0, ∥θ/Lθ∥K,kp < ε. Hence θ/Lθ ∈ Vkp(ε) and

| ⟨S ∗ θ, ψ̌⟩ |≤ Lθ , for ψ ∈ B1 ∩ D{Mp}. It follows that for ψ ∈ D{Mp}

(3.9) | ⟨S ∗ θ, ψ̌⟩ |≤ Lθ∥ψ∥L1,exp(−M(k|·|)) .

Because D{Mp} is dense in L1
exp(−M(k|·|)) it follows that for every θ in D{Mp}

Ω,kp
,

S ∗ θ is a continuous functional on L1
exp(−M(k|·|)). Thus S ∗ θ belongs to

L∞
exp(M(k|·|)) = {f ∈ L1,loc | ∥f(·)eM(k|·|)∥L∞ <∞}, since the space L∞

exp(M(k|·|))
is the dual of the space L1

exp(−M(k|·|)). Hence,

∥S ∗ θ(x)∥L∞,exp(M(k|·|)) ≤ Lθ ,

where Lθ > 0 is a constant which depends of θ. From Lemma 3.3 for the chosen

kp ∈ ℜ and Ω there exist k̃p and u ∈ D{Mp}
Ω,kp

and ψ ∈ D{Mp}
Ω such that

S = Pk̃p(D)(u ∗ S) + (ψ ∗ S) .

Now it’s obvious that F1 = u ∗ S and F2 = ψ ∗ S satisfy the conditions in d).
d) ⇒ a) We will assume that F2 = 0. The general case is proved analogously.
It is enough to prove that φ −→ F ∗φ is a continuous mapping from S{Mp} to
S{Mp}. Then a) will hold because of the continuity of the operator Pkp(D) and
the fact that Pkp(D)(S ∗φ) = Pkp(D)S ∗φ. Let us observe that the continuity
of the mapping φ −→ F ∗ φ will follow if we prove that for every r which is
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bigger than some fixed r0, there exist l such that φ −→ F ∗ φ is a continuous

mapping from SMp,r
∞ to SMp,l

∞ (because S{Mp} is a inductive limit of SMp,r
∞ ).

For the k in the condition d) we choose r0, small enough such that for all r ≤ r0
the integral ∫

Rn

e−M(k|t|)eM(r|t|)dt

converges. We fix r such that r ≤ r0. Note that

(3.10)
rp | x |p

2pMp
≤ rp | x− t |p

Mp
+
rp | t |p

Mp
≤

≤ eM(r|x−t|) + eM(r|t|) ≤ 2eM(r|x−t|)eM(r|t|)

and the last inequality holds since the function M(ρ) is nonnegative. For the
associated function there exist ρ0 > 0 such that for ρ ≤ ρ0, M(ρ) = 0 and for
ρ > ρ0, M(ρ) > 0 (for the properties of the associated function we refer to [9]).

If | x |> 2ρ0
r

then from the inequality (3.10) it follows that

eM( r
2 |x|) ≤ 2eM(r|x−t|)eM(r|t|) .

If | x |≤ 2ρ0
r

, there exist c > 0 such that eM( r
2 |x|) ≤ c . Hence, it follows that

for all x ∈ Rn, the following inequality holds

eM( r
2 |x|) ≤ 2(c+ 1) eM(r|x−t|)eM(r|t|)

and we get
e−M(r|x−t|) ≤ CeM(r|t|)e−M( r

2 |x|) ,

where we put C = 2(c+ 1). Let l < r/4. Then,

lα | F ∗Dαφ(x) | eM(l|x|)

Mα
≤ lα

Mα

∫
Rn

| F (t) || Dαφ(x− t) | dt eM(l|x|) =

=
( l
r

)α 1

Mα

∫
Rn

| F (t) | e
M(k|t|)

eM(k|t|) | Dαφ(x− t) | rα e
M(r|x−t|)

eM(r|x−t|) dt e
M(l|x|) ≤

≤ C ′
( l
r

)α
sr(φ)

∫
Rn

e−M(k|t|)eM(r|t|)dt e−M( r
2 |x|) eM(l|x|).

Because of the way we choose l, it follows that

sl(F ∗ φ) = sup
α

lα∥ | F ∗Dαφ(x) | eM(l|x|)∥L∞

Mα
≤ C ′′sr(φ) ,

where C ′′ is a constant which does not depend on φ. We have shown that

φ −→ F ∗φ is a continuous mapping from SMp,r
∞ to SMp,l

∞ . Hence, φ −→ F ∗φ
is a continuous mapping from S{Mp} to S{Mp}.
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It is clear that the ultratempered convolution of S1, S2 ∈ O′∗
C is in O′∗

C (see
[7]). Also for any T ∈ S ′∗, and ψ ∈ S∗ we have

(3.11)
⟨(S1 ∗ S2) ∗ T, ψ⟩ = ⟨S1 ∗ T, Š2 ∗ ψ⟩ =

= ⟨T ∗ S2, Š1 ∗ ψ⟩ = ⟨T, (S1 ∗ S2) ∗ ψ⟩ .

We supply O′∗
C with the topology from Ls(S∗,S∗) and denote it by O′∗

C,s.

The same topology on this space is induced by Ls(S ′∗,S ′∗).

Proposition 3.4. The strong topology on L(S ′∗,S ′∗) induces the same topology
on O′∗

C .

Proof. Let U be a neighborhood of zero in S ′∗. Without loss of generality we
can assume that

U = U(V ′;B′) = {S ∈ O′∗
C (S ′∗;S ′∗) |S ∗ T ∈ V ′ , for all T ∈ B′} ,

where B′ is bounded subset in S ′∗ and V ′ is a neighborhood of zero in S ′∗. We
can assume that

V ′ = V ′(B, ε) = {T ∈ S ′∗ | | ⟨T, φ⟩ |< ε for all φ ∈ B} ,

where B is bounded in S∗, and ε > 0. Let

V = {φ ∈ S∗ | | ⟨T, φ⟩ |< εfor all T ∈ B′} .

Since S∗ is barreled is follows that V is a neighborhood of zero in S∗. Without
loss of generality we will assume that B = B̌ = {φ̌ | φ ∈ B} and B′ = B̌′ =
{Ť | T ∈ B′}. Let

W =W (V,B) = {S ∈ O′∗
C (S ′∗;S ′∗) |S ∗ φ ∈ V for all φ ∈ B} .

We will show thatW (V,B) ⊂ U(V ′, B′). Let S ∈W (V,B), T ∈ B′ and φ ∈ B.
Then

| ⟨S ∗ T, φ⟩ |=| ⟨T, Š ∗ φ⟩ |< ε .

Hence S ∗ T ∈ V ′ for all T ∈ B′. We have shown that the topology induced by
Ls(S ′∗,S ′∗) is stronger than the topology induced by Ls(S∗,S∗). The other
direction is similar and will be omitted.

Proposition 3.5. O′∗
C,s is complete.

Proof. Let {Sµ} be a Cauchy net in O′∗
C,s. Then {S̃µ} is a Cauchy net in

Ls(S∗,S∗), where S̃µ : S∗ −→ S∗ are induced continuous linear operators by

Sµ, S̃µ(φ) = Sµ ∗ φ. Since S∗ is complete and bornological [22], Corollary 1 of
Theorem 32.2, Ls(S∗,S∗) is complete, there exists R ∈ Ls(S∗,S∗), such that
S̃µ −→ R. We define T ∈ S ′∗ by ⟨T, φ⟩ = R(φ)(0). For φ ∈ S∗, R(φ) = T ∗ φ,
since for x ∈ Rn

R(φ)(x) = lim
µ
(Sµ ∗ φ)(x) = lim

µ
(Sµ ∗ (τxφ))(0) =



10 Pavel Dimovski, Bojan Prangoski, Daniel Velinov

= R(τxφ)(0) = ⟨T, τxφ⟩ = T ∗ φ(x) .
Thus for φ ∈ S∗, T ∗φ ∈ S∗ and the map φ −→ T ∗φ is continuous. It follows
that T ∈ O′∗

C , and moreover Sµ −→ T in O′∗
C since T̃ = R.

Proposition 3.6. A sequence Sn from O′∗
C,s converges to zero in O′∗

C,s if and
only if for every k > 0 resp. there exist k > 0, there exists r > 0, resp. there
exists kp ∈ ℜ and sequences of L∞ functions F1n and F2n, such that

(3.12) Sn = Pr(D)F1n + F2n, resp. Sn = Pkp(D)F1n + F2n,

F1n, F2n ∈ O′∗
C ,

∥eM(k|x|)(| F1n | + | F2n |)∥L∞ <∞
and

(3.13) F1n −→ 0, F2n −→ 0 in O′∗
C,s ,

Proof. The proof of the proposition is similar to the proof of the Proposition

3.2, but we will give it for completeness. Let Sn be a sequence in O
′{Mp}
C

which converges to zero in O
′{Mp}
C,s . Let Ω be a bounded open set in Rn which

contains zero and K = Ω. Let φ ∈ D{Mp}
K be fixed. Then Sn ∗ φ −→ 0 in

S{Mp}. Because S{Mp} is a (DFS) space, it follows that there exist k > 0 such

that Sn ∗ φ ∈ SMp,k
∞ , and is bounded there, i.e.

sup
α

kα∥eM(k|x|)Dα(Sn ∗ φ)(x)∥L∞

Mα
≤ Cφ, ∀n ∈ N ,

where Cφ is a constant which depends only on φ. We get

∥eM(k|x|)(Sn ∗ φ)(x)∥L∞ ≤ Cφ , ∀n ∈ N .

Let ψ ∈ B1 ∩ D{Mp}, then

(3.14) | ⟨Sn ∗ ψ, φ̌⟩ |=| ⟨Sn ∗ φ, ψ̌⟩ |≤ ∥Sn ∗ φ∥L∞
exp(M(k|·|))

≤ Cφ ,

for all n ∈ N, where B1 is the closed unit ball in L1
exp(−M(k|·|)).

From (3.14) it follows that

{Sn ∗ ψ| ψ ∈ B1 ∩ D{Mp}, n ∈ N}

is weakly bounded set in D′{Mp}
K , and because D{Mp}

K is barrelled, the set is
equicontinuous (see [20], Theorem 5.2). There exist kp ∈ ℜ and δ > 0 such
that

| ⟨Sn ∗ θ, ψ̌⟩ |≤ 1 , θ ∈ Vkp(δ) , ψ ∈ B1 ∩ D{Mp} , n ∈ N,

where Vkp(δ) = {χ ∈ D{Mp}
K | ∥χ∥K,kp ≤ δ} . The same inequality holds for

the closure Vkp(δ) of Vkp(δ) in D{Mp}
K,kp

. If θ ∈ D{Mp}
Ω,kp

, then for some Lθ > 0,

∥θ/Lθ∥K,kp < δ, hence θ/Lθ ∈ Vkp(δ) and

| ⟨Sn ∗ θ, ψ̌⟩ |≤ Lθ , ψ ∈ B1 ∩ D{Mp} , n ∈ N .
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It follows that for ψ ∈ D{Mp}

(3.15) | ⟨Sn ∗ θ, ψ̌⟩ |≤ Lθ∥ψ∥L1,exp(−M(k|·|)) .

Because D{Mp} is dense in L1
exp(−M(k|·|)), it follows that for every θ in D{Mp}

Ω,kp
,

Sn ∗ θ are continuous functionals on L1
exp(−M(k|·|)) and uniformly bounded.

Thus Sn ∗ θ belong to L∞
exp(M(k|·|)). Hence,

∥Sn ∗ θ(x)∥L∞,exp(M(k|·|)) ≤ Lθ , ∀n ∈ N ,

where Lθ > 0 is a constant which depends on θ. From Lemma 3.3, for the

chosen kp ∈ ℜ and Ω, there exist k̃p and u ∈ D{Mp}
Ω,kp

and ψ ∈ D{Mp}
Ω such that

Sn = Pk̃p(D)(Sn ∗ u) + (Sn ∗ ψ) .

Let F1n = Sn ∗ u and F2n = Sn ∗ ψ . It’s obvious that u ∈ O
′{Mp}
C , hence

F1n, F2n ∈ O
′{Mp}
C . F1n = Sn ∗ u −→ 0 and F2n = Sn ∗ ψ −→ 0 in O

′{Mp}
C .

Conversely, let Fn −→ 0 and F1n −→ 0 in O
′{Mp}
C , Sn = Pkp(D)Fn + F1n,

for some kp ∈ ℜ. We will assume that F1n = 0 for all n ∈ N. The general

case is proved similarly. Let M(B, V ) be a neighborhood of zero in O
′{Mp}
C ,

where B is a bounded set in S{Mp}, and V is a open neighborhood of zero in
S{Mp}. Since, Pkp(D) : S{Mp} −→ S{Mp} is continuous, there exists an open

neighborhood V0 such that Pkp(D)(V0) ⊂ V . Since Fn −→ 0 in O
′{Mp}
C , and

M(B, V0) is a neighborhood of zero, there exists n0, such that for all n ≥ n0,
Fn ∈ M(B, V0). Thus, Fn ∗ φ ∈ V0, for all φ ∈ B and n ≥ n0, and it follows
that

Pkp(D)(Fn ∗ φ) ⊂ Pkp(D)(V0) ⊂ V .

Remark 3.7. The inclusion O′∗
C,s ↪→ S ′∗ is continuous. Let V be a open neigh-

borhood in S ′∗. Let us consider this neighborhood of O′∗
C :

W = {S ∈ O′∗
C |S ∗ δ ∈ V } .

Then it is obvious that from S ∈ W follows that S ∈ V . We get that, from
the convergence of F1n, F2n to zero in O′∗

C in the above proposition follows the
convergence in S ′∗.

We denote by ES ′∗ the space of elements f from S ′∗ such that for every
S ∈ O′∗

C , S ∗ f ∈ E∗ and the mapping

S → S ∗ f, O′∗
C,s → E∗ is continuous.

Proposition 3.8. (i) ES ′∗ ⊂ E∗ ∩ S ′∗.
(ii) If f ∈ ES ′∗ and S ∈ O′∗

C then S ∗ f ∈ ES ′∗.
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Proof. (i) It’s clear from the definition of ES ′∗ that if f ∈ ES ′∗, f ∈ S ′∗ and

because δ is in O
′{Mp}
C we obtain δ ∗ f = f is an element in E∗.

(ii) From (i) it follows that S ∗f ∈ S ′∗. Let T ∈ O′∗
C . We have that

T ∗ (S ∗ f) = (T ∗ S) ∗ f

is in E∗. It’s obvious that the mapping T −→ T ∗ (S ∗ f) is continuous, since
the mappings T −→ T ∗ S −→ (T ∗ S) ∗ f = T ∗ (S ∗ f) are continuous. Hence,
S ∗ f ∈ ES ′∗.

Note that S∗ is subset of ES ′∗.

4. The space of multipliers

Again we assume (M.1), (M.2) and (M.3).
As in [12] and [16] , we define O∗

M as the space of functions φ from E∗ such
that φ ∈ O∗

M if and only if

(4.1)

for every ψ ∈ S∗, φψ ∈ S∗ and the mapping
ψ → φψ, S∗ −→ S∗ is continuous .

From the definition, we have that for φ ∈ O∗
M the mapping

T → φT, S ′∗ → S ′∗, is continuous.

In the proof of the next proposition we will need the following function:

(4.2) ψ(x) =
∞∑
j=1

ρ(x− xj)

eM(k|xj |)
,

where the function ρ ∈ D{Mp}, with values in [0, 1], such that

supp ρ ⊂ {x | |x| ≤ 1, x ∈ Rn}, ρ(x) = 1,

for x ∈ {x | | x |≤ 1/2}, and {xj} is a sequence of real numbers such that
| xj |> 2 and | xj+1 |≥| xj | +2, j ∈ N.

Since ρ ∈ D{Mp}, there exist h and C such that sup
x,α

| Dαρ |< ChαMα. We

will show that ψ ∈ S{Mp}. We choose r such that rh <
1

2
and r <

k

H4
√
2
.

Using that
| x |
| xj |

≤ 2, we have,

∑
α,β

∫
Rn

r2α+2β⟨x⟩2β | Dαψ(x) |2

M2
αM

2
β

dx
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≤
∑
α,β

∞∑
j=1

∫
|x−xj |≤1

r2α+2β⟨x⟩2βC2h2αM2
α

M2
αM

2
βe

2M(k|xj |)
dx

≤
∑
α,β

∞∑
j=1

∫
|x−xj |≤1

r2α+2β⟨x⟩2βC2h2α

M2
βe

2M(k|xj |)
dx

≤
∑
α,β

∞∑
j=1

∫
|x−xj |≤1

r2αr2β2β | x |2β C2h2α

M2
βe

2M(k|xj |)
dx

≤C1

∑
α,β

∞∑
j=1

(rh)2α(r
√
2)2β

M2
βe

2M(k|xj |)

∫
|x−xj |≤1

| x |2β dx

≤C2

∑
α,β

∞∑
j=1

(rh)2α(r
√
2)2β | xj |2β

M2
βe

2M(k|xj |)

≤C2

∑
α,β

∞∑
j=1

(rh)2α(r2
√
2)2β | xj |2β M2

β+1

M2
βk

2β+2 | xj |2β+2

≤C2A

k2

∑
α,β

∞∑
j=1

(rh)2α
(2r√2H

k

)2β 1

| xj |2
≤ C ′ .

The proof of the next proposition in (Mp)-case is given in [12] and [16].

Proposition 4.1. Let φ ∈ C∞. The following statements are equivalent.
(i) φ ∈ O∗

M .
(ii) For every h > 0, resp. for every k > 0, there exist k > 0, resp. there

exist h > 0,

sup
α∈Nn

0

{h
α∥e−M(k|·|)φ(α)∥L∞

Mα
} <∞.

(iii) For every ψ ∈ S∗ and every r > 0, resp. for some r > 0.

σm,ψ(φ) := σm,∞(ψφ) <∞.

(iv) In Roumieu case, for every ψ ∈ S{Mp} and for every ri, sj ∈ ℜ

γri,sj ,ψ(φ) := γri,sj (ψφ) <∞.

Proof. We will give the proof only for the Roumieu case.
(iii)⇔ (iv) it’s obvious. We will prove (iii)⇒ (ii)⇒(i)⇒(iii).

(iii)⇒(ii) First we will prove that φ is in E{Mp}. LetK be a fixed compact set in
Rn and take χ ∈ D{Mp}, with values in [0, 1] and χ(x) = 1 on a neighborhood
of K. Then there exist r such that

sup
α

rα∥Dα(φ(x)χ(x))∥L∞(K)

Mα
≤
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≤ sup
α

rα∥eM(r|x|)Dα(φ(x)χ(x))∥L∞(Rn)

Mα
= Csr(φχ) <∞ .

We have Dα(φ(x)χ(x)) = Dαφ(x) for x ∈ K. Thus φ ∈ E{Mp}.
Let (ii) does not hold. Then there exist k such that for all n ∈ N,

sup
α

∥e−M(k|x|)Dαφ(x)∥L∞

nαMα
= ∞ .

Since φ ∈ E{Mp} for every compact set K, there exist C and nK ∈ N such that
for n ≥ nK

sup
α

∥e−M(k|x|)Dα(φ(x))∥L∞(K)

nαMα
< C n ≥ nK .

Hence, we can choose αj and xj , where | xj+1 |>| xj | +2, such that

e−M(k|xj |) | Dαjφ(xj) |
jαjMαj

≥ 1 .

Now take ψ as in (4.2), where we take k and the sequence {xj} to be the ones
chosen here. Then φψ ∈ S{Mp}, i.e. there exist l such that

sup
α

lα∥eM(k|x|)Dα(φ(x)ψ(x))∥L∞

Mα
<∞ .

Then there exist j0 such that for all j ≥ j0, l > 1/j.

sup
α

lα∥eM(l|x|)Dα(φ(x)ψ(x))∥L∞

Mα
≥

≥ lαjeM(l|xj |) | Dαj (φ(xj)ψ(xj)) |
Mαj

≥

≥ 1

jαj

eM(l|xj |) | Dαjφ(xj) |
eM(k|xj |)Mαj

≥ eM(l|xj |) .

This implies that φψ is not in SMp,l
∞ , which is a contradiction with the above

assumption.
(ii)⇒(i) From the condition (ii) it is obvious that φ ∈ E{Mp}. It is enough

to prove that for every r > 0 there is l > 0 such that the mapping ψ −→ φψ

for SMp,r
∞ to SMp,l

∞ is continuous. Let r > 0 be fixed. Put k = r/4. By (ii),
there exist h such that

sup
α

hα∥e−M(k|x|)Dαφ(x)∥L∞

Mα
<∞ .

If l < h/4 and l < r/4, then

lα∥eM(l|x|)Dα(φ(x)ψ(x))∥L∞

Mα
≤
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≤
∑
β≤α

(
α

β

)
lα∥eM(l|x|)Dβφ(x)Dα−βψ(x)∥L∞

Mα−βMβ
=

=
∑
β≤α

(
α

β

)
(2l)α∥eM(l|x|)Dβφ(x)e−M(k|x|)eM(k|x|)hβ

2αhβ
·

·D
α−βψ(x)eM(r|x|)e−M(r|x|)rα−β∥L∞

rα−βMα−βMβ
≤

≤ Csr(ψ)∥e−M(r|x|)eM(k|x|)eM(l|x|)∥L∞

∑
β≤α

(
α

β

)
1

2α

(2l
h

)β(2l
r

)α−β
≤ C ′sr(ψ),

where the last inequality holds because of the way we choose l.
(i)⇒(iii) it’s obvious.

Remark 4.2. It’s obvious that if φ ∈ O∗
M , then φ ∈ S ′∗.

Denote by L(S∗,S∗) the space of continuous linear mappings from S∗ into
S∗; O∗

M is its subspace. With Ls(S∗,S∗) we denote the space L(S∗,S∗) with
the strong topology. We can also equip O∗

M with the topology induced by
Ls(S ′∗,S ′∗). Similarly as in Proposition 3.4 we can prove that the topologies
induced by Ls(S∗,S∗) and Ls(S ′∗,S ′∗) are the same. The space O∗

M equipped
with this topology is denoted by O∗

M,s.

Proposition 4.3. The Fourier transformation is a topological isomorphism of
O∗
M,s onto O′∗

C,s.

Proof. We only show the Roumieu case. Using Proposition 3.2 d), there exist
k > 0 and there exist kp ∈ ℜ such that S = Pkp(D)F + F1, where F and F1

satisfy the growth condition given in Proposition 3.2. Without loss of generality
we may assume that F1 = 0. By (M.2) we obtain the following estimates for
the derivatives of the Fourier transform of F :

(4.3) | DαF(F ) |=| F(xαF ) |=
∣∣∣ ∫

Rn

e−ixξxαF (x)dx
∣∣∣ ≤

≤
∫
Rn

| x |α | F (x) | dx ≤ C1

∫
Rn

| x |α e−M(k|x|)dx ≤

≤ C2

∫
Rn

|x|α

⟨x⟩α+n+1
Mα+n+1

( c
k

)|α|+n+1

dx ≤ CMαMn+1

(Hc
k

)|α|+n+1

.

In ([9]), page 88, the following estimate of the analytic function Pkp(ζ) is given:
For every L there is C such that

| Pkp(ζ) |≤ ACeM(
√
nLH|ζ|) , ζ ∈ Cn .

Using this and the Cauchy integral formula, we obtain that for every L > 0
there exist C > 0 such that

(4.4) | DαPkp(ξ) |≤ C
α!

dα
· eM(Lc′|ξ|) ,
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where c′ > 0 is a constant that does not depend on L. It is also known that,
for every m > 0,

(4.5)
mkk!

Mk
−→ 0 as k −→ ∞

Let m > 0 be arbitrary. Let L be a constant such that

∥e−M(m|ξ|)eM(Lc′|ξ|)∥L∞ <∞ ,

and h is chosen such that 2h < 1 and 2hHc < k. From (4.3), (4.4), (4.5) and
(M.1) we obtain,

sup
α

hα∥e−M(m|ξ|)Dα(Prp(ξ)F̂ (ξ))∥L∞

Mα

≤ sup
α

∑
β≤α

(
α

β

)
(2h)α∥e−M(m|ξ|)Dα−βPrp(ξ)D

βF̂ (ξ)∥L∞

2αMα−βMβ

≤ C sup
α

1

2α
∥e−M(m|ξ|)eM(Lc′|ξ|)∥L∞ ·

·
∑
β≤α

(
α

β

)
(α− β)!

Mα−βdα−β
Mn+1(2h)

β
(Hc
k

)|β|+n+1

≤ C1 sup
α

∥e−M(m|ξ|)eM(Lc′|ξ|)∥L∞
1

2α

∑
β≤α

(
α

β

)(2hHc
k

)|β|

≤ C2∥e−M(m|ξ|)eM(Lc′|ξ|)∥L∞ ≤ C3 .

By Proposition 4.1 (ii), it follows that Ŝ ∈ O
{Mp}
M and it is obvious that the

mapping S −→ Ŝ is injective.

Now we will prove that the Fourier transform from O
{Mp}
M to O

′{Mp}
C is an

injective mapping. Let φ ∈ O
{Mp}
M and ψ ∈ S{Mp}. The mappings

ψ̂ −→ ψ −→ φψ −→ F(φψ) =
( 1

2π

)n
φ̂ ∗ ψ̂

are continuous from S{Mp} to S{Mp}. Hence, φ̂ ∈ O
′{Mp}
C and the mapping

φ −→ φ̂ is injective from O
{Mp}
M into O

′{Mp}
C . Now it’s enough to see that the

same things hold for the F̄ = (2π)nF−1 and the fact that F is isomorphism on
S{Mp} and S ′{Mp} with an inverse F−1. Because F : S∗ −→ S∗ is a topological
isomorphism it’s obvious that it is also a topological isomorphism from O∗

M,s

to O′∗
C,s.

Proposition 4.4. The bilinear mappings

O∗
M,s × S∗ → S∗, (α, ψ) → αψ,

O∗
M,s × S ′∗ → S ′∗, (α, f) → αf,

are hypocontinuous.
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Proof. It is obvious that the bilinear mappings are separately continuous. We
will prove only that the mapping T : O∗

M,s × S∗ −→ S∗, defined by T (φ,ψ) =
φψ is hypocontinuous. Since S∗ is barrelled space, from [20] Theorem 5.2., it
follows that for every open set V in S∗, and every bounded set B in O∗

M,s,
then there is an open set W in S∗ such that T (B ×W ) ⊂ V . Now, let V1 is
arbitrary open set in S∗ and let B1 be a bounded set in S∗. Then, for the open
set W1 in O∗

M,s, where W1 = {ψ ∈ O∗
M,s |φψ ∈ V, for all ψ ∈ B}, we have

T (W1 ×B1) ⊂ V1.

Proposition 4.5. The space O∗
M,s is nuclear.

Proof. Since the space S∗ is reflexive and the space S′∗ is nuclear, from [20] it
follows that Ls(S∗,S∗) is nuclear space. Thus, the space O∗

M,s is nuclear as a
subspace of a nuclear space.
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