
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

A NEW WEB CRAWLER FOR GATHERING SOURCE CODE SOLUTIONS FOR

DATA MINING PURPOSES

Emil Stankov Mile Jovanov Vasja Pavlov Ana Madevska

Bogdanova

Faculty of Computer

Science and Engineering

Faculty of Computer

Science and Engineering

student at

Faculty of Computer

Science and Engineering

Faculty of Computer

Science and Engineering

Skopje, Macedonia Skopje, Macedonia Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Teaching programming in the modern educational

environment imposes the need for fast assessment of large

sets of programming solutions. The same applies to

programming competitions, especially the international ones.

Although the problem is typically solved by use of computer

aided or automated assessment (CAA) systems that perform

grading based on test cases, this dominant approach for

source code assessment has its own serious drawbacks.

In this paper we present our research in this field, with

focus on one important preparatory step before conducting

our experiments. We review our proposed model for

semiautomatic student source code assessment, and we

explain the need for gathering a variety of source code sets.

Then, we discuss the problem we have encountered when

trying to collect source code sets from a very famous web-

based CAA system. Finally, we describe the creation process

for a web crawler – as a proposed solution to this particular

problem.

I. INTRODUCTION

Teaching programming in the modern educational

environment imposes the need for fast assessment of large

sets of programming solutions. University and high school

programming courses (especially the ones on introductory

level) often include lots of exercises in order to make the

adoption of the syntax of the programming language that is

being taught easier for the students, and also to help them

develop algorithmic way of thinking. Programming is a

compulsory course in every computer science educational

curriculum, so usually lots of students enrol in these courses.

This introduces the course lecturers to the problem of mass

number of solutions to exercises that have to be graded – the

assessment can no longer be done manually in a reasonable

amount of time.

The need for fast assessment has been recognized even

earlier, in the organization of competitions in informatics

(programming). The International programming competitions

typically require from the participants to submit program

codes – solutions to concrete algorithmic problems. However,

the competition difficulty is not so much in the programming

part, as it is in the design of appropriate algorithms for

solving the problems at hand. In most cases, these

competitions are based on CAA of the submitted solutions,

which is accomplished by running them on batches of input

test data and testing correctness of the output by comparing it

to the expected output. The automation of the assessment is

necessary not only because of the large amount of solutions,

but also in order to have the results in reasonable time.

The same or slightly similar methods can be used as a

solution to the previously mentioned problem of fast

assessment of program codes in educational environment.

There are many existing systems that are used for this purpose

[1], and the benefits are numerous, as described in [2].

The grading of the programming solutions outlined above

is quite rough and strict. The grade (usually expressed in

terms of number of gained points) assigned to a particular

program code may give a completely wrong impression about

how good (and efficient) is the algorithm that it implements.

As an illustration, one possible situation where this type of

automatic assessment would assign zero points too strictly is

with a program that, in essence, represents an implementation

of a complete and 100% correct algorithm for solving the

problem at hand, but uses a wrong format when printing the

output data.

The rest of the paper is organized as follows: in Section II

we review our new model for semiautomatic student source

code assessment, and explain the need for gathering large

source code sets. In Section III we present three different

web-based CAA systems that gather source codes from

students and/or contest participants. One of these systems,

Topcoder [13], doesn’t allow a direct access to its collected

source codes. In Section IV we elaborate on the

implementation of a new web crawler for gathering source

codes, which has been created for the purpose of collecting

source codes from the Topcoder’s web site. Finally, in

Section V, we give a conclusion and directions for future

work.

II. THE NEW MODEL FOR SEMIAUTOMATIC STUDENT

SOURCE CODE ASSESSMENT

The main goal of our wider research is to allow improvement

of the assessment of programming codes submitted by

students as a solution to a particular problem. The idea is to

examine the possibility for detection of programs whose

structure is similar to that of the correct programming

solutions to a given algorithmic task, but have received a

113

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

weak grade when assessed automatically by a CAA system.

The detection of such programs would indicate the potential

that they have, as well as the possibility that these programs

might have been assessed too strictly by the system. In this

way, the detected programs would be isolated as candidates

for reassessment using some other strategy. Thus, this

approach would significantly improve the quality of grading.

A. Source Code Similarity Detection

In order to determine similarity between source codes, it is

necessary to conduct source code analysis. Source code

analysis is an important field in computer science. Source

code analysis is the process of extracting information about a

program, from its own source code. It has many applications

into a variety of software engineering tasks, including: clone

detection, debugging, source code optimization, source code

comparison, reverse engineering, performance analysis, and

many others. There are many existing software tools that are

used for source code analysis. Most of them have been

designed to make the analysis for the major purpose of

discovering software plagiarism.

According to Roy and Cordy [3], source code similarity

detection algorithms can be classified as based on: strings;

tokens; parse trees; program dependency graphs (PDGs);

metrics; and hybrid approaches.

B. The New Approach for Source Code Similarity Detection

We have proposed a new hybrid approach for determining

similarity between source codes that includes the use of data

mining methods [4]. Given a set (pool) of source codes that

represent solutions to the same algorithmic problem, we

perform the following three main steps:

1. We build a parse tree for each of the source codes

under consideration;

2. We extract attributes that represent key

characteristics of the source codes by calculating

metrics from the constructed parse trees. We obtain

attribute representations that describe each source

code’s structure numerically;

3. We apply data mining clustering methods on the

dataset formed by these attribute representations in

order to discover the existence of similarities among

them.

C. EMAx – a Source Code Analysis Tool

For the purpose of conducting the described structural source

code analysis, we have created a software tool called EMAx

[5]. EMAx has been designed to be used as a tool that

provides vector representations of source codes further used

in solving the problem of source code comparison. The tool

has been tested with real sets of source codes taken from

programming competitions and has proved as very efficient in

performing the task for which it has been intended. One of the

main advantages that the tool offers is that it analyzes the

source codes by simulating each code’s execution from a

given starting point.

D. The Resulting Model

The results presented in [4] and [6] show that the proposed

approach can be used for source code similarity detection

with satisfactory precision. Based on this conclusion, we have

also proposed a new model which offers a way, given a large

set of solutions, to determine which of the solutions that are

still not graded (or that have been assigned a weak grade)

should be (re)assessed manually, using information from

solutions that have been assigned a solid grade (by a human

evaluator or a CAA system). The model represents

collaboration between a human and software based on data

mining clustering methods.

According to the proposed algorithm for detecting

candidates for reassessment, first we group the programs into

clusters containing similar programs (using data mining

methods). Clusters that do not contain programs that are

assigned the maximum score by the CAA system are rejected

– we assume that these clusters do not contain candidates for

reassessment. The programs from the remaining clusters that

are not graded with the maximum score should be subject to

reassessment. Our first experiments showed decrease of the

candidates for reassessment from 50% up to 80%, which

effectively shortens the time for the task of reassessment.

E. The Need for Source Code Sets

In order to evaluate the successfulness and the usefulness of

the proposed algorithm for detecting candidate source codes

for reassessment, we have conducted experiments with some

sets of programming codes (results presented in [6]). For

deeper insight in the problem, we needed to experiment with

many different sets of source codes, i.e. with a variety of

program sets – solutions to different algorithmic problems.

An inevitable step before starting the experiments was to

collect appropriate source code sets. The focus of the

following two sections of the paper is exactly on this

important issue.

III. SYSTEMS CONTAINING SOURCE CODE SETS

In this section we present three contest systems / web

programming environments that gather programming codes

from contestants / students. Each of these systems is used for

different purposes, and by different sets of users.

A. MENDO

MENDO [7, 8] is a contest management system developed to

support the organization of the Macedonian national

competitions in informatics, organized by the Computer

Society of Macedonia [9]. Because it contains an automated

assessment feature, this system is currently used in some

courses at our institution. MENDO employs the previously

described type of grading and represents an example of a

modern online contest management system. It has been

successfully used for organization of the Macedonian national

competitions in informatics for the last 4 years. Similar types

114

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

of automated grading systems (for example, [10]) are used at

the International Olympiad in Informatics [11].

Since we participate in the development of this system, we

had an easy access to all the source codes submitted by

students / participants and gathering them as sets of solutions

to different tasks represented a fairly simple task.

B. E-Lab

E-Lab [12] is a CAA system developed at our institution as a

web programming environment. This system has been used

for 2 years in the first-year introductory programming

courses. It also offers grading based on test cases, but is not

suitable for grading programming solutions in informatics

competitions.

Being a property of our institution, E-Lab provided us with

easy access to all the source codes submitted by first-year

students, and like with MENDO, it was quite easy to gather

them as sets of solutions to different tasks.

C. Topcoder

Topcoder [13] is a company that uses crowdsourcing (a form

of outsourcing) to produce high quality software. Everything

is conducted via competitions. People compete, submit a

solution and after the competition only the winners get paid.

There are different types of competitions, ranging from bug

tracking, design and development competitions, to

architecture competitions, and finally the most popular ones –

the algorithmic single round matches (SRM). Our research

focuses only on SRMs.

SRMs are competitions held regularly 3 to 4 times a month.

Each contest lasts 75 minutes. Participants are divided into

two divisions, 1 and 2 (the former being the stronger and the

later the weaker division), based upon a ranking obtained by

competing in previous SRMs. Furthermore, the participants in

each division are subdivided into so called “rooms” of up to

20 people. Each division is given 3 problems with increasing

difficulty. After the coding phase of 75 minutes, each

participant is given a preliminary score based on how fast he

has solved the problems. Then, there is a challenge phase and

a system testing phase. In the challenge phase, participants

are given 15 minutes to review the solutions of all the

problems submitted by the people in their room. If they think

a solution is wrong (contains a bug), they may submit their

own test case and test it against the author’s solution. A

correct “challenge” adds 50 points to the score and an

incorrect one takes 25 away. Finally, the remaining solutions

“still standing” after the challenge phase are tested against a

test set, designed by a test crew. A solution which passes the

system tests is generally considered correct. However, in very

rare occasions, due to a wrong choice of test cases, a solution

may pass all of them although it is not completely correct.

The Topcoder competitions take place in the “Topcoder

Arena”, which is a Java applet. After each competition, all the

solutions that (at the very least) compiled are uploaded on the

Topcoder website. Since we didn’t have a direct access, we

had to find a way to gather them from the website.

IV. REALIZATION OF WEB CRAWLER FOR GATHERING

SOURCE CODE SETS

For the purposes of our research, we needed to build a web

crawler in order to be able to extract codes from past

Topcoder competitions. A web crawler is a program which

scans a website and is able to go to its subsequent links much

like a Windows user walks (crawls) through desktop folders.

Our specific task was to pick a handful of different tasks (10

would suffice), but to pick only such tasks that had a large

number of passing (correct) solutions so that we could build a

large enough dataset of codes. For each problem, we needed

to separate the solutions written in Java, C++ and C#. The

project was built as 2 applications: one written in Java and

another one in C++.

The Java application works as follows. It is provided a

website URL as input by the C++ application. Then, it

downloads the HTML of the given website and saves it into a

text file. In addition, it uses cookies in order to log in, since

Topcoder requires one to be logged in so that she can get

access to the results.

The main part of the project is the C++ application. When

run, it asks for an initial URL – the starting point for the

crawler. This URL was handpicked for each particular

problem. An example of an URL for one page from the

Topcoder website is:

“http://community.topcoder.com/stat?Contest=%2Fstat%3Fc

%3Dround_overview%26er%3D5%26rd%3D14722&rd=147

22&c=round_overview&er=1000”.

The web page corresponding to this URL is shown in Fig.

1.

Figure 1: Web page from the Topcoder web site showing the

results for a single SRM competition.

Fig. 1 presents a web page containing the results from a

single SRM contest. The division 1 coders are shown on the

left and the division 2 coders are on the right. The figure

depicts only a small part of the listed contestants. Usually,

there are 1000 more contestants below. The data are always

presented in this format. By clicking on the yellow circle in

brackets (placed before any name), we can see the results of

the selected user for that competition. There, we are presented

with links to that user’s solutions, if they have compiled.

Furthermore, there is a column which shows whether the

115

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

particular solution passed or failed the system tests. For our

research, we were only interested in the passing ones.

Before we started coding the web crawler, we had to go

through the HTML of some of these pages manually and see

the way data is formatted there so that we know how to build

the crawler. Afterwards, for each of these pages we created a

parser which isolates the URLs needed to continue crawling.

For example, on the page presented in Fig. 1, the parser

would isolate the URLs which represent the yellow dots

beside each name and save them in a separate file. From here,

the next parser needs only to repeat the procedure. Then we

use the Java application to open each URL and save the

HTML codes in text files. The C++ application would then

parse each file and search for the URLs of the specific task

we want. This step is conducted one more time, now saving

the code of each solution in a separate file. The file extension

is determined based on a basic code analysis. For example, all

C++ codes typically begin with a #include pre-processor

directive, so it is easy to determine that the extension for such

files should be ‘.cpp’.

V. CONCLUSION AND FUTURE WORK

In this paper we presented our wider research on

improvement of the assessment of programming codes

submitted by students as a solution to a particular problem.

Further, we emphasized the need for using a web crawler and

we discussed the creation process of such a crawler for the

Topcoder system in details. The described web crawler has

played a significant role in achieving and confirming the

results of our research.

A future step in our research regarding the web crawler

will be to create a more general crawler that will offer greater

opportunities for gathering source codes from many different

web systems/sites.

REFERENCES

[1] P. Ihantola, T. Ahoniemi, V. Karavirta, O. Seppala, “Review of Recent

Systems for Automatic Assessment of Programing Assignments”, in

Proceedings of the 10th Koli Calling International Conference on
Computing Education Research, ACM, New York, NY, 2010.

[2] D. Trusso Haley, P. Thomas, A. De Roeck, M. Petre, “Seeing the

Whole Picture: Evaluating Automated Assessment Systems”, in
ITALICS e-journal of the Learning and Teaching Subject Network for

Information and Computer Science (LTSN-ICS) 2007; 6(4): 203-24.

[3] C. Roy, J. Cordy, “A Survey on Software Clone Detection Research”,
School of Computing, Queen’s University, Canada, 2007,

http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf.

[4] E. Stankov, M. Jovanov, A. Madevska Bogdanova, “Source Code

Similarity Detection by Using Data Mining Methods”, in Proceedings
of the 35th International Conference on Information Technology

Interfaces (ITI 2013); pp. 257-262, University Computing Centre, 2013.

[5] E. Stankov, M. Jovanov, A. Bojchevski, A. Madevska Bogdanova,

“EMAx: Software for C++ Source Code Analysis”, Olympiads in

Informatics, an International Journal, 2013, vol. 7, pp. 123-131.

[6] E. Stankov, M. Jovanov, A. Madevska Bogdanova, M. Gusev, “A New
Model for Semiautomatic Student Source Code Assessment”, Journal

of Computing and Information Technology (CIT), 2013, (in print)

[7] B. Kostadinov, M. Jovanov, E. Stankov, “A new design of a system for

contest management and grading in informatics competitions”, in ICT
Innovations 2010, Web proceedings, pp. 87-96, Ohrid, Macedonia,

2010.

[8] The MENDO system, http://mendo.mk.

[9] Computer Society of Macedonia, http://www.cs.org.mk.

[10] S. Maggiolo, G. Mascellani, “Introducing CMS: A Contest
Management System”, Olympiads in Informatics, an International

Journal, 2012, vol. 6, pp. 86-99.

[11] International Olympiad in Informatics, http://www.ioinformatics.org

[12] T. Delev, D. Gjorgjevikj, “E-Lab: Web Based System for Automatic

Assessment of Programming Problems”, in ICT Innovations 2012, Web

proceedings, pp. 75-83, Ohrid, Macedonia, 2012.

[13] The Topcoder system, http://topcoder.com.

116

The 10th Conference for Informatics and Information Technology (CIIT 2013)

