
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/237080464

Comparison Of Rectangular Matrix Multiplication With And Without Border

Conditions

Conference Paper · April 2013

CITATIONS

0
READS

673

5 authors, including:

Some of the authors of this publication are also working on these related projects:

SemBigData: Using Semantic Web Technologies to Connect and Explore Big Data View project

LDA: Linked Data Authorization View project

Petre Lameski

Ss. Cyril and Methodius University in Skopje

110 PUBLICATIONS 1,182 CITATIONS

SEE PROFILE

Igor Mishkovski

Ss. Cyril and Methodius University in Skopje

72 PUBLICATIONS 408 CITATIONS

SEE PROFILE

Sonja Filiposka

Ss. Cyril and Methodius University in Skopje

144 PUBLICATIONS 863 CITATIONS

SEE PROFILE

Dimitar Trajanov

Ss. Cyril and Methodius University in Skopje

162 PUBLICATIONS 649 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dimitar Trajanov on 03 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/237080464_Comparison_Of_Rectangular_Matrix_Multiplication_With_And_Without_Border_Conditions?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/237080464_Comparison_Of_Rectangular_Matrix_Multiplication_With_And_Without_Border_Conditions?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SemBigData-Using-Semantic-Web-Technologies-to-Connect-and-Explore-Big-Data?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/LDA-Linked-Data-Authorization?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petre-Lameski?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Mishkovski?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Mishkovski?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Mishkovski?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-be28e80d04e6068f98817361af067aa2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA4MDQ2NDtBUzoxMDM4MDQxNzk1ODI5OTBAMTQwMTc2MDI1Mzg3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

COMPARISON OF RECTANGULAR MATRIX MULTIPLICATION WITH AND

WITHOUT BORDER CONDITIONS

Petre Lameski Igor Mishkovski Sonja Filiposka Dimitar Trajanov Leonid Djinevski

Ss. Cyril and Methodius University in Skopje / FINKI FON University

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Matrix multiplication algorithms are very common and

widely used for computation in almost any field. There are

many implementations for matrix multiplication on different

platforms and programming models. GPU devices in the

recent years have become powerful computational units that

have entered the segment of high performance computing. In

this paper we are analysing two approaches for the matrix

multiplication algorithm with and without border conditions

for parallel GPU execution.

I. INTRODUCTION

Matrix multiplication is an operation that is widely used in

different algorithms. For that reason the speed up and

optimization of this operation may improve their

performance. As a mathematical operation, matrix

multiplication has been given a significant attention from the

computer science community. The regular complexity of the

“school” method for sqyare matrix multiplication is O(n
3
).

Several other methods for matrix multiplication exist that

reduce this complexity. These are the Strassen algorithm with

complexity of O(n
2.807

), the Coppersmith–Winograd

algorithm with complexity of O(n
2.376

) [1] and Williams

algorithm O(n
2.373

) [2]. For rectangular matrix

multiplication (n x m and p x n] the complexity is O(nmp) The

reduction in algorithm complexity introduce the speedup in

matrix multiplication that increases overall performance for

algorithms where matrix multiplication is used in significant

portion of the operations.

Given the architecture of the computers used, there are

existing attempts to speed up matrix multiplication using the

specific computer architecture design [3]. The architecture

specific characteristics of the computer are used to increase

performance such as instruction level parallelism, tiling,

avoiding cache conflicts, pre-fetching etc.

The optimizations of algebra operations has been addressed

by the community and wide variety of libraries exist that try

to optimize mathematical operations. Hardware vendors

usually provide libraries for their specific architectures that

use the architecture specific characteristics to improve

performance on some operations. Such libraries are MKL and

ACML. All of these libraries have the standard BLAS (Basic

Linear Algebra Sub-programs) libraries [4] which

performance greatly depends on the underlying architecture

[5].

With the introduction of the parallel programming, especially

with the introduction of GPU devices, there have been

significant improvements of a wide variety of algorithms and

processes that can use the benefits of parallelism. The main

problem with the introduction of the parallel execution is that

not all algorithms can be efficiently parallelized. The standard

library that is introduced by NVIDIA, for all of their GPU

architectures is CUBLAS that includes the matrix

multiplication. CUBLAS optimizes the performance of matrix

multiplication, however it is not very well documented what

characteristics of the hardware are used for the introduced

speedup. There have been attempts that successfully

outperform CUBLAS by means of increasing the efficiency

of the algorithm based on the specifics of certain architectures

[6].

One of the things that can be seen in literature is that all

optimizations of the algorithm for matrix multiplication is

based on the underlying hardware architecture since it is

always a good idea to use the benefits that the architectures

have to offer in order to improve the performance.

In this paper we compare two approaches for the standard

Matrix Multiplication Algorithm on custom sized rectangular

matrices on GPU devices. The approaches differ in the size of

memory transfer between the global memory and the device

shared memory, and in the number of operations that are used

in the matrix kernel calculation. The main motivation for this

work is the comparison of the performance between memory

transfer between shared and global memory and the branching

inside the kernel function for matrix multiplication.

This paper is organized as follows: Section 2 present a short

overview of General-Purpose computing on GPU devices

(GPGPU). The matrix multiplication algorithms are defined

in Section 3. The testing methodologies used are described in

Section 4, followed by the obtained results in Section 5. We

conclude this paper in Section 6.

II. GPU DEVICES

Today GPU devices are the most powerful computational

processors for the cost at which are being sold [7]. The latest

Kepler [8] architecture provides almost 3TFLOPS in the

hands of a workstation PC, thus providing tremendous

computational resources for the average user. Either the fact

that GPUs were traditionally developed for graphics

applications, with the help of enthusiasts, a significant

research was performed for utilizing the computational

resources for GPGPU (General-Purpose applications on GPU

devices) [9]. Nvidia as one of the leading vendor for GPU

processors, in 2007 released parallel computing platform and

programming model for execution general-purpose

applications, called CUDA (Compute Unified Device

Architecture) [10]. Additionally, OpenCL was released as a

The 10th Conference for Informatics and Information Technology (CIIT 2013)

standard programming language, formed by the major

vendors like Apple, Nvidia, AMD/ATI, Intel, and other

companies in the industry [11]. OpenCL is very similar to

CUDA, however it agnostic to any platform, and

vendor independent, unlike CUDA which is bounded to

Nvidia. OpenCL is based on ANSI-C99 extended with

additional data types, qualifiers and build-in functions. Beside

C/C++, CUDA on the other hand is available to more

programming styles like fortran, java, phyton, perl, MATLAB

and others, by adopting a wrapper of the native CUDA C/C++

compiler.

As one of the latest GPU devices from Nvidia, which has the

latest Kepler architecture at the moment of writing this paper

is the GTX 680 model. On Fig. 1 we present the memory

organization of the GTX 680, which consists of 3 levels: L1

cache memory (configurable by the developer 16/32/48 KB),

L2 cache memory that is of fix size of 512KB and the Global

memory of 2GB.

III. MATRIX MATRIX MULTIPLICATION ALGORITHM

The regular matrix multiplication is done by multiplying each

row of a matrix A with each column of a matrix B. Each

element in the matrix C can be defined as:

(1)

In parallel multiplication of matrices on GPU, each result Ci,j

is calculated by a separate thread. Threads access the global

memory, but threads in same block, access the very fast

shared memory inside the GPU. The shared memory in the

system used in this paper is consisted of blocks with size

32x32. The matrix is divided in these blocks and the

calculation is done. The problem arises when the sizes of the

matrix are not divisible by the block size. In this case the sum

in (1) cannot be calculated in the same way since not all the

memory entries in the block have a valid value. Another

problem is that the allocated shared memory is also included

in the calculation sum.

Figure 2. Shared memory blocks and Actual matrix borders

Inside the kernel function each block has two block IDs bx

and by and each thread has also two IDs, tx and ty. Lets define

the block to be the size of B. The data from the global

memory is copied in the shared memory for higher

performance of the calculation. Each cell of the matrix is

copied in the shared memory such that i=B*bx+tx and

j=B*by+ty. The border cases are when the values B*bx+tx or

B*by+ty cross the values of the widths and heights of A and

B. The difference between the allocated shared memory

blocks and actual matrix sizes is given in Figure 2.

When the sizes of A and B are not divisible with B, the border

blocks and threads do the calculation anyway and if they are

not ignored explicitly. Because the memory content is not

known the results of this calculation will be wrong. The

border cases are a problem when calculating the product of

two rectangular matrices with arbitrary dimensions using

CUDA.

Figure 1. GPU memory organization

The 10th Conference for Informatics and Information Technology (CIIT 2013)

To solve the problem with the border cases in rectangular

matrix multiplication we have two choices. The first choice is

to copy only the data within the border of the matrices and

deal with the border cases inside the kernel function. In this

way we save on the memory transfer bandwidth that is used

between the system memory and the device memory. The

second choice is to increase the width and height of the

matrices so that their dimensions are divisible with the used

block size. The fields of the matrices that don’t actually

belong to them are initialized with zero values so that they

don’t interfere with the multiplication process. By increasing

the dimensions of the matrices, the border conditions no

longer exist and the kernel doesn’t have the need of logical

branching in the code.

The first approach is defined in Listing 1 as follows:

Listing 1:

Allocate Matrices A (n x m) and B (p x n);

If (m mod BLOCK_SIZE) !=0

 Set new_m to next multiple of BLOCK_SIZE >m;

If (n mod BLOCK_SIZE) !=0

 Set new_n to next multiple of BLOCK_SIZE >n;

If (p mod BLOCK_SIZE) !=0

 Set new_p to next multiple of BLOCK_SIZE >p;

Allocate Matrices NewA and NewB to new_n x new_m and

new_p x new_n;

Initialize all fields of NewA and NewB to 0;

For i in [0:new_n] and j in [0:new_m]

Set NewA(i,j) = A(i,j) if i<n and j<m;

For i in [0:new_p] and j in [0:new_m]

Set NewB(i,j) = B(i,j) if i<n and j<m;

Do normal kernel multiplication of NewA and NewB on GPU

such that NewC=NewA*NewB;

Get subMatrix C with dimensions m x p from NewC starting

at (0,0);

Return C;

The first approach moves bigger matrices in kernel memory

and does the calculation with them. The result will be the

same since all the fields from the bigger matrices NewA and

NewB that are not common with A and B are set to 0. In this

way we get the same result as we would get if using formula

(1) to multiply the matrices.

The second algorithm on the other hand uses only the

initialized matrices A and B with their respectful sizes n x m

and p x n. The border cases are resolved inside the kernel.

Whenever the kernel multiplication reaches a border block

that is not fully covered with values from the matrices, the

shared memory for that block is set to 0. In this way we

introduce code branching inside the kernel function. However

since there are more threads inside the calculating blocks than

needed, we also need to do additional check if the resulting

matrix C is also inside the defined borders. The second

algorithm can be defined as:

Algorithm 2:

Allocate Matrices A and B with dimension n x m and p x n;

Do modified kernel multiplication of A and B on GPU such

that C=A*B;

 Return C;

Modified kernel multiplication:

Set bx=BlockID.x,

by=BlockID.y,

tx=ThreadID.x,

 ty=ThreadID.y;

S=0;

Declare SharedA and SharedB as shared memory matrices;

Do for all fields:

 if (bx and by are a border case)

 if(bx*BLOCK_SIZE+tx>weightA && by*BLOCK_SIZE >

heightA)

 SharedA[tx,ty]=0;

 Else

 Load corresponding A element to SharedA

 if(bx*BLOCK_SIZE+tx>weightB && by*BLOCK_SIZE >

heightB)

SharedB[tx,ty]=0;

 Else

 Set SharedB[tx,ty] to the corresponding B element

 Synchronize threads;

 Do the multiplication for the sub matrix;

 Synchronize threads;

 If(Current thread has legal result)//is within the borders

 Write block sub matrix to device memory (C);

 Return C;

IV. TESTING METHODOLOGIES

All tests were performed on the hardware infrastructure

presented in Table 1. The Ubuntu 12.04 LTS was installed as

an operating system, while the implementation was compiled

with the Nvidia nvcc compiler that is part of the CUDA 5.0

toolkit.

Table 1:

Utilized hardware for performing all of the tests

CPU Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

RAM Kingston 32GB @ 1.60GHz

GPU NVIDIA GeForce GTX 680

Both approaches were compared by measuring the speed

performance of the CUDA matrix multiplication kernels for

different sizes of the matrices. Since we are dealing with

multiplication of two matrices, the width wA of the matrix A

and the height hB of the matrix B should have the same value,

therefore, in our experiments we are varying the height hA of

matrix A and width wB of matrix B. For wA = hB we have

chosen cases 32 and 64 in order to analyse both approaches.

The 10th Conference for Informatics and Information Technology (CIIT 2013)

V. RESULTS

This section presents the results obtained from both of the

matrix multiplication approaches for two cases. For the first

case of wA = hB = 32, we analyze both of the approaches.

Fig. 3 presents the speed of the second approach with

conditional branching, which is normalized over the speed of

the first approach without conditional branching.

Additionally, in Fig. 3 we present the speed of first approach

which is also normalized, thus is always equal to 1. Higher is

better, therefore, every value of the second approach below 1

confirms that introducing few more memory transfers

provides increased performance than having conditional

branching in the kernel code.

The second experiment that we performed for the second case

of wA = hB = 64 is presented in Fig. 4. Similar as for the first

experiment, the results provide an additional confirmation

that more memory transfers provides increased performance

than having conditional branching in the kernel code.

The average improvement of performance is 10.24% for the

case of wA = hB = 64 and 15.51% improvement in the case

of wA = hB = 32.

It is interesting to state that for both cases the results present

performance increases for some data requirements.

Figure 3 Normalized speed for both approaches for the case wA = hB = 32

Figure 4 Normalized speed for both approaches for the case wA = hB = 64

0

1

2

3

4

5

N
o

rm
al

iz
e

d
 p

e
r

[W
it

h
o

u
t

IF
]

[m,n] pairs

With IF Without IF

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

N
o

rm
al

iz
e

d
 p

e
r

[W
it

h
o

u
t

IF
]

[m,n] pairs

With IF Without IF

The 10th Conference for Informatics and Information Technology (CIIT 2013)

VI. CONCLUSION

In this paper we present an analysis the for parallel matrix

multiplication algorithm on GPU devices. Two approaches

were implemented and a performance comparison between

them was performed. The results show that for both cases the

approach with few more memory transfers outperforms the

approach with the conditional branching. Additionally, the

performance increased noticed for some data requirements is

a subject for future work, as well as analysing other matrix

multiplication algorithms for GPU devices.

REFERENCES

[1] Don Coppersmith and Shmuel Winograd. Matrix Multiplication via
Arithmetic Progressions. J. Symbolic Computation, 9(3):251–280,
1990, doi:10.1016/S0747-7171(08)80013-2.

[2] Virginia Vassilevska Williams, Breaking the Coppersmith-Winograd
barrier, UC Barkeley and Stanford University
unicyb.kiev.ua/~vingar/progr/201112/1semestr/matrixmult.pdf
(unpublished manuscript).

[3] Nadav Eiron, Michael Ro deh, Iris SteinwartsMatrix Multiplication: A
Case Study of Algorithm Engineering Proceedings WAE98 Saarbruken
Germany August 20 22 1997 Ed: Kurt Mehlhorn pp.98-109.

[4] E. Anderson et al. LAPACK: A portable linear algebra library for high-
performance computers. Technical Report 20, LAPACK Working Note,
May 1990.

[5] K. Goto and R. A. v. d. Geijn. Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw, 34:12:1–12:25, May 2008.

[6] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang
Bao, and Ninghui Sun. Fast implementation of dgemm on fermi gpu. In
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 35:1–
35:11, New York, NY, USA, 2011. ACM.

[7] D. Kirk, W. Wen-mei, and W. Hwu, “Programming massively parallel
processors: a hands-on approach,” USA, 2010.

[8] NVIDIA, “Next generation cuda compute architecture: Kepler gk110,”
2012.

[9] Harris, M.J., “General Purpose Computation on GPUs”, retrieved
February 2013 from http://www.gpgpu.org/.

[10] NVIDIA CUDA, retrieved February 2013 from
http://developer.nvidia.com/object/cuda.html/.

[11] The OpenCL Specification, Version 1.1, document Revision 43, 2009,
retrieved February 2013 from http://www.khronos.org/opencl/.

View publication stats

https://www.researchgate.net/publication/237080464

