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ABSTRACT 

Matrix multiplication algorithms are very common and 

widely used for computation in almost any field. There are 

many implementations for matrix multiplication on different 

platforms and programming models. GPU devices in the 

recent years have become powerful computational units that 

have entered the segment of high performance computing. In 

this paper we are analysing two approaches for the matrix 

multiplication algorithm with and without border conditions 

for parallel GPU execution. 

I. INTRODUCTION 

Matrix multiplication is an operation that is widely used in 

different algorithms. For that reason the speed up and 

optimization of this operation may improve their 

performance. As a mathematical operation, matrix 

multiplication has been given a significant attention from the 

computer science community. The regular complexity of the 

“school” method for sqyare matrix multiplication is O(n
3
). 

Several other methods for matrix multiplication exist that 

reduce this complexity. These are the Strassen algorithm with 

complexity of O(n
2.807

), the Coppersmith–Winograd 

algorithm with complexity of O(n
2.376

) [1] and Williams 

algorithm O(n
2.373

) [2]. For rectangular matrix 

multiplication (n x m and p x n] the complexity is O(nmp) The 

reduction in algorithm complexity introduce the speedup in 

matrix multiplication that increases overall performance for 

algorithms where matrix multiplication is used in significant 

portion of the operations. 

 

Given the architecture of the computers used, there are 

existing attempts to speed up matrix multiplication using the 

specific computer architecture design [3]. The architecture 

specific characteristics of the computer are used to increase 

performance such as instruction level parallelism, tiling, 

avoiding cache conflicts, pre-fetching etc. 

The optimizations of algebra operations has been addressed 

by the community and wide variety of libraries exist that try 

to optimize mathematical operations. Hardware vendors 

usually provide libraries for their specific architectures that 

use the architecture specific characteristics to improve 

performance on some operations. Such libraries are MKL and 

ACML. All of these libraries have the standard BLAS (Basic 

Linear Algebra Sub-programs) libraries [4] which 

performance greatly depends on the underlying architecture 

[5]. 

 

With the introduction of the parallel programming, especially 

with the introduction of GPU devices, there have been 

significant improvements of a wide variety of algorithms and 

processes that can use the benefits of parallelism. The main 

problem with the introduction of the parallel execution is that 

not all algorithms can be efficiently parallelized. The standard 

library that is introduced by NVIDIA, for all of their GPU 

architectures is CUBLAS that includes the matrix 

multiplication. CUBLAS optimizes the performance of matrix 

multiplication, however it is not very well documented what 

characteristics of the hardware are used for the introduced 

speedup. There have been attempts that successfully 

outperform CUBLAS by means of increasing the efficiency 

of the algorithm based on the specifics of certain architectures 

[6]. 

 

One of the things that can be seen in literature is that all 

optimizations of the algorithm for matrix multiplication is 

based on the underlying hardware architecture since it is 

always a good idea to use the benefits that the architectures 

have to offer in order to improve the performance. 

 

In this paper we compare two approaches for the standard 

Matrix Multiplication Algorithm on custom sized rectangular 

matrices on GPU devices. The approaches differ in the size of 

memory transfer between the global memory and the device 

shared memory, and in the number of operations that are used 

in the matrix kernel calculation. The main motivation for this 

work is the comparison of the performance between memory 

transfer between shared and global memory and the branching 

inside the kernel function for matrix multiplication.  

 

This paper is organized as follows: Section 2 present a short 

overview of General-Purpose computing on GPU devices 

(GPGPU). The matrix multiplication algorithms are defined 

in Section 3. The testing methodologies used are described in 

Section 4, followed by the obtained results in Section 5. We 

conclude this paper in Section 6. 

II. GPU DEVICES 

Today GPU devices are the most powerful computational 

processors for the cost at which are being sold [7]. The latest 

Kepler [8] architecture provides almost 3TFLOPS in the 

hands of a workstation PC, thus providing tremendous 

computational resources for the average user. Either the fact 

that GPUs were traditionally developed for graphics 

applications, with the help of enthusiasts, a significant 

research was performed for utilizing the computational 

resources for GPGPU (General-Purpose applications on GPU 

devices) [9]. Nvidia as one of the leading vendor for GPU 

processors, in 2007 released parallel computing platform and 

programming model for execution general-purpose 

applications, called CUDA (Compute Unified Device 

Architecture) [10]. Additionally, OpenCL was released as a 
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standard programming language, formed by the major 

vendors like Apple, Nvidia, AMD/ATI, Intel, and other  

companies in the industry [11]. OpenCL is very similar to 

CUDA, however it agnostic to any platform, and  

vendor independent, unlike CUDA which is bounded to 

Nvidia. OpenCL is based on ANSI-C99 extended with 

additional data types, qualifiers and build-in functions. Beside 

C/C++, CUDA on the other hand is available to more 

programming styles like fortran, java, phyton, perl, MATLAB 

and others, by adopting a wrapper of the native CUDA C/C++ 

compiler.  

 

As one of the latest GPU devices from Nvidia, which has the 

latest Kepler architecture at the moment of writing this paper 

is the GTX 680 model. On Fig. 1 we present the memory 

organization of the GTX 680, which consists of 3 levels: L1 

cache memory (configurable by the developer 16/32/48 KB), 

L2 cache memory that is of fix size of 512KB and the Global 

memory of 2GB. 

 

III. MATRIX MATRIX MULTIPLICATION ALGORITHM 

The regular matrix multiplication is done by multiplying each 

row of a matrix A with each column of a matrix B. Each 

element in the matrix C can be defined as: 

 

           

 

   

      
(1) 

                
 

In parallel multiplication of matrices on GPU, each result Ci,j 

is calculated by a separate thread. Threads access the global 

memory, but threads in same block, access the very fast 

shared memory inside the GPU. The shared memory in the 

system used in this paper is consisted of blocks with size 

32x32. The matrix is divided in these blocks and the 

calculation is done. The problem arises when the sizes of the 

matrix are not divisible by the block size. In this case the sum 

in (1) cannot be calculated in the same way since not all the 

memory entries in the block have a valid value. Another 

problem is that the allocated shared memory is also included 

in the calculation sum.  

 

 
Figure 2. Shared memory blocks and  Actual matrix borders 

 

Inside the kernel function each block has two block IDs bx 

and by and each thread has also two IDs, tx and ty. Lets define 

the block to be the size of B. The data from the global 

memory is copied in the shared memory for higher 

performance of the calculation. Each cell of the matrix is 

copied in the shared memory such that i=B*bx+tx and 

j=B*by+ty. The border cases are when the values B*bx+tx or 

B*by+ty cross the values of the widths and heights of A and 

B. The difference between the allocated shared memory 

blocks and actual matrix sizes is given in Figure 2. 

 

When the sizes of A and B are not divisible with B, the border 

blocks and threads do the calculation anyway and if they are 

not ignored explicitly. Because the memory content is not 

known the results of this calculation will be wrong. The 

border cases are a problem when calculating the product of 

two rectangular matrices with arbitrary dimensions using 

CUDA.  

 

 
Figure 1. GPU memory organization 
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To solve the problem with the border cases in rectangular 

matrix multiplication we have two choices. The first choice is 

to copy only the data within the border of the matrices and 

deal with the border cases inside the kernel function. In this 

way we save on the memory transfer bandwidth that is used 

between the system memory and the device memory. The 

second choice is to increase the width and height of the 

matrices so that their dimensions are divisible with the used 

block size. The fields of the matrices that don’t actually 

belong to them are initialized with zero values so that they 

don’t interfere with the multiplication process. By increasing 

the dimensions of the matrices, the border conditions no 

longer exist and the kernel doesn’t have the need of logical 

branching in the code. 

 

The first approach is defined in Listing 1 as follows: 

 

Listing 1: 

Allocate Matrices A (n x m) and B (p x n); 

If (m mod BLOCK_SIZE) !=0 

    Set new_m to next multiple of BLOCK_SIZE  >m; 

If (n mod BLOCK_SIZE) !=0 

 Set new_n to next  multiple of BLOCK_SIZE  >n; 

If (p mod BLOCK_SIZE) !=0 

 Set new_p to next multiple of BLOCK_SIZE  >p; 

Allocate Matrices NewA and NewB to new_n x new_m and 

new_p x new_n; 

Initialize all fields of NewA and NewB to 0; 

For i in [0:new_n] and j in [0:new_m] 

Set NewA(i,j) = A(i,j) if i<n and j<m; 

For i in [0:new_p] and j in [0:new_m] 

Set NewB(i,j) = B(i,j) if i<n and j<m; 

Do normal kernel multiplication of NewA and NewB on GPU 

such that NewC=NewA*NewB; 

Get subMatrix C with dimensions m x p from NewC starting 

at (0,0); 

Return C; 

 

The first approach moves bigger matrices in kernel memory 

and does the calculation with them. The result will be the 

same since all the fields from the bigger matrices NewA and 

NewB that are not common with A and B are set to 0. In this 

way we get the same result as we would get if using formula 

(1) to multiply the matrices. 

 

The second algorithm on the other hand uses only the 

initialized matrices A and B with their respectful sizes n x m 

and p x n. The border cases are resolved inside the kernel. 

Whenever the kernel multiplication reaches a border block 

that is not fully covered with values from the matrices, the 

shared memory for that block is set to 0. In this way we 

introduce code branching inside the kernel function. However 

since there are more threads inside the calculating blocks than 

needed, we also need to do additional check if the resulting 

matrix C is also inside the defined borders. The second 

algorithm can be defined as: 

 

Algorithm 2: 

Allocate Matrices A and B with dimension n x m and p x n; 

Do modified kernel multiplication of A and B on GPU such 

that C=A*B; 

 Return C; 

 

Modified kernel multiplication: 

Set  bx=BlockID.x,  

by=BlockID.y,  

tx=ThreadID.x, 

 ty=ThreadID.y; 

S=0; 

Declare SharedA and SharedB as shared memory matrices; 

Do for all fields:  

   if (bx and by are a border case)  

   if(bx*BLOCK_SIZE+tx>weightA && by*BLOCK_SIZE > 

heightA) 

 SharedA[tx,ty]=0; 

   Else 

 Load corresponding A element to SharedA 

   if(bx*BLOCK_SIZE+tx>weightB && by*BLOCK_SIZE >   

heightB) 

SharedB[tx,ty]=0; 

   Else 

 Set SharedB[tx,ty] to the corresponding B element 

    Synchronize threads; 

   Do the multiplication for the sub matrix; 

  Synchronize threads; 

 If(Current thread has legal result)//is within the borders 

 Write block sub matrix to device memory (C); 

 Return C; 

IV. TESTING METHODOLOGIES 

All tests were performed on the hardware infrastructure 

presented in Table 1. The Ubuntu 12.04 LTS was installed as 

an operating system, while the implementation was compiled 

with the Nvidia nvcc compiler that is part of the CUDA 5.0 

toolkit. 

 

 

Table 1:  

Utilized hardware for performing all of the tests 

CPU    Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 

RAM    Kingston 32GB @ 1.60GHz 

GPU    NVIDIA GeForce GTX 680 

 

 

Both approaches were compared by measuring the speed 

performance of the CUDA matrix multiplication kernels for 

different sizes of the matrices. Since we are dealing with 

multiplication of two matrices, the width wA of the matrix A 

and the height hB of the matrix B should have the same value, 

therefore, in our experiments we are varying the height hA of 

matrix A and width wB of matrix B. For wA = hB we have 

chosen cases 32 and 64 in order to analyse both approaches.  
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V.  RESULTS 

This section presents the results obtained from both of the 

matrix multiplication approaches for two cases. For the first 

case of wA = hB = 32, we analyze both of the approaches. 

Fig. 3 presents the speed of the second approach with 

conditional branching, which is normalized over the speed of 

the first approach without conditional branching. 

Additionally, in Fig. 3 we present the speed of first approach 

which is also normalized, thus is always equal to 1. Higher is 

better, therefore, every value of the second approach below 1 

confirms that introducing few more memory transfers 

provides increased performance than having conditional 

branching in the kernel code.  

 

The second experiment that we performed for the second case 

of wA = hB = 64 is presented in Fig. 4. Similar as for the first 

experiment, the results provide an additional confirmation 

that more memory transfers provides increased performance 

than having conditional branching in the kernel code. 

The average improvement of performance is 10.24% for the 

case of wA = hB = 64 and 15.51% improvement in the case 

of wA = hB = 32. 

It is interesting to state that for both cases the results present 

performance increases for some data requirements.  

 
 

Figure 3  Normalized speed for both approaches for the case wA = hB = 32 

 

 

Figure 4  Normalized speed for both approaches for the case wA = hB = 64 
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VI. CONCLUSION 

In this paper we present an analysis the for parallel matrix 

multiplication algorithm on GPU devices. Two approaches 

were implemented and a performance comparison between 

them was performed. The results show that for both cases the 

approach with few more memory transfers outperforms the 

approach with the conditional branching. Additionally, the 

performance increased noticed for some data requirements is 

a subject for future work, as well as analysing other matrix 

multiplication algorithms for GPU devices. 
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