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Abstract. In this paper we propose an algorithm for obtaining all minimal cut 
sets for a given two-terminal network. The algorithm works on undirected 
networks without matter whether they are coherent or not. The difference 
between this algorithm and the other proposed algorithms is in the fact that 
there are not received candidates for minimal cut set that are not minimal cut 
sets. A large part of the paper proves the correctness of the algorithm and 
analyzes its complexity.  
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1   Introduction 

One of the most complex problems in system reliability analysis is finding minimal 
path and cut sets. Minimal cut sets are mostly used for high reliability systems 
because this approach received minor rounding errors. A problem for developing 
algorithms that will give these sets is one of the frequently analyzed problems. But 
usually there are regarded directed and acyclic networks [1, 2].  Here we regard 
undirected network. 

From the other side, in most of the proposed algorithms that solves this problem, 
there are obtained candidates for minimal cut sets that are not minimal. These sets 
must be eliminated by some additional procedure that involves comparison between 
all pairs of candidates for minimal cut set. This is an expensive procedure, without 
difference is there are a lot of such candidates or not. The algorithm proposed here 
gives minimal cut sets only. In fact we propose a technique for determination whether 
some cut set is a minimal cut set. Moreover we give a proof that the proposed 
algorithm gives all minimal cut sets. Additionally, we analyze the complexity of the 
algorithm. 



2 General 

Let we have a two-terminal undirected network G(V, E), where V is the set of nodes, 
and E is a set of links. Let s be the source node and t be the sink node. The cut set is 
defined as a set of links, such that if there no flow through these links, then there no 
flow from the source to the sink. The cut set C is a minimal cut set if there is not 
another cut set C’ such that C’ � C. For an undirected network the following 
proposition is clear. 
 
Proposition 1.1 Let G(V, E) be an undirected connected network with source node s 
and sink node t. Then C is a cut set if and only if by removing the links from C, the 
graph G(V, E) is divided into two subgraphs G1(V1, E1) and  G2(V2, E2) such that 
V1�V2 = �, V1�V2=V, the source s � V1  and the sink t � V2. 
 
The following proposition specifies the minimal cut sets. The proof of it is given in 
[3]. 
 
Proposition 1.2 Let G(V, E) be an undirected connected network with source node s 
and sink node t. If the graph G(V, E) is divided into two connected subgraphs G1(V1, 
E1) and  G2(V2, E2) such that V1�V2 = �, V1�V2=V, the source s � V1  and the sink t 
� V2, then C = E/(E1 � E2) is a minimal cut set. 
 
Example 1.1 For the two-terminal network with source s and sink t on the Fig.1, the 
minimal cut set C = {{s,c}, {c,b}, {b,e}, {e,d}, {d,t}} separated the network in to two 
subgraphs G1({s, a, b, d}, {{s, a}, {s, b}, {a, d}, {b, d}, {a, b}})  and G2({c, e, f, 
t},{{c, e}, {c, f}, {e, f}, {e, t}, {f, t}}) 

 

Fig. 1. The two-terminal network with source s and sink t. The set C = {{s,c}, {c,b}, {b,e}, 
{e,d}, {d,t}}is a minimal cut set for this network. The graph is separated in to G1({s, a, b, d}, 
{{s, a}, {s, b}, {a, d}, {b, d}, {a, b}})  and G2({c, e, f, t},{{c, e}, {c, f}, {e, f}, {e, t}, {f, t}}) 

 
           



3   Description of the algorithm 

In this section we will explain the work of the proposed algorithm. From the 
Proposition 1.2 follows that by deleting the edges from some minimal cut set C, the 
graph will be separate into exactly two connected components, such that, s belongs in 
the one of them and t in the other, Fig. 1 So, the idea of the algorithm is to construct 
all those components.  

In order to avoid obtaining the same connected graphs more than once, we define 
ordering of the nodes. For this ordering we use BFS search starting from s and define 
a function  

 
P: V�N, P(a)=i if a is the i-th node in the BFS search started from s  (1) 
 
So, we have that if P(a) < P(b) then the shortest path from s to a is longer or equal 
then the shorter path from s to b.  

In each step of the while loop we use an element {B1, B2, B3, T}. Let us see the 
meaning of each element from this list. B1 is one minimal cut set for the given graph. 
Corresponding graph G1 is G1(B3, {{u, v}|{u, v}�B3}) and B2 is a set of all nodes v 
from V/B3 that need to be added in B3 in one of the next steps. T is a tree rooted in t 
that connects all nodes that are not in B3. This tree is kept as a set of nodes, list of 
decedents of each node call DescadentList and the parent function �.  

At the beginning we set the initial values of the sets B1, B2 and B3. B1 is a minimal 
cut set, consist of all links from s, B3 is initialize on {s}, and B2 is initialize on the set 
of all nodes connected by edge with s. The initialize tree T is a BFS tree of the graph 
G’(V/B3, E/B1) rooted at t. It is clear that the minimal cut set B1 divide the graph G 
into two graphs G1({s}, �) and G2({V/{s}, E/B1). 

 
 
1 Program MINIMAL_CUT_SET (G, s, t) 

Output{CutSet (the set of all minimal cut sets)} 
 
Construct the function P using BFS started from s; 

5  B1={{s, a} | {s, a} � E}; 
B2={a | {s, a} � E}/{t}; 
B3={s}; 
T ={DescadentList, �} of the graph G’(V/B3,E/B1) by BFS; 
A = {{B1, B2, B3, T}}; 

10 MinCutSet={{{s, a} | {s, a} � E}};  
 while A	� do 
  Take an element B={B1, B2, B3, T} � A and remove it from A. 
           for each element b � B2 do 

                      if first(CONECTION(E, B1, b, T))==True then 
15                       B3 = B3�{b} 
       B2 ={x|x� B2 
 P(b) < P(x)} � {a | {a, b} � B1 
 (P(b) < P(x) �  
           
(�{x, a}, {x, a}�B1)} 
       B1 = (B1\ {{a, b}|{a, b}�B1})�{{a, b}|{a, b} �B1} 



 MinCutSet = MinCutSet � {B1}               
20           A = A�{ {B1, B2, B3 , Last(CONECTION)}} 
 else if MIN(CONNECTION[[2]]>b then 
                       B4 =CONECTION[[2]] 
                           B3 = B3�{b} �B4 
       B2 ={x|x� B2 
 P(b) < P(x)} � {a | {a, b} � B1 
 a � B4 
   

25     (P(b) < P(x) � 
(�{x, a}, {x, a}�B1)} 
       B1 = (B1\ {{a, b}|{a, b}�B1})�{{a, b}|{a, b} �B1
 a �B4} 
               MinCutSet = MinCutSet � {B1}               
                A = A�{ {B1, B2, B3 , Last(CONECTION)}} 
      Print (MinCutSet) 
      end{program} 
 
 
In each iteration of the while loop we take an element {B1, B2, B3, T} from A. The 

cut set B1 divides G into two connected graphs G1(B2, E2) and G2(V/B2, E/(E2�B1)). 
Then in each iteration of the for cycle we take one node from B2 and check whether 
his removal from G2 other nodes remain connected. This can be done by BFS starting 
from t. But we do this with the procedure CONNECTION, which is chipper. If the 
rest of G2 is connected, in lines 15-20 we get another member in A and another 
minimal cut set.  

If the rest of G2 is not connected we do additional checks. Since we have a 
connected graph, they are connected by some node from V\VT, so VT and V\VT 
separate G into two connected components. Because we want no repetition of the 
same combination of vertices in B3, we use strategy to add nodes having larger value 
of P. But it is not always possible to add nodes in increasing order, so when we 
receive a set of nodes that are not connected with t such that they have P value greater 
than P(b), they are added to B3 (22-28).   

The procedure CONNECTION is called from the graph G, the tree T and one node 
b from T. The output of the procedure is an answer FAULT, when there are nodes in 
T that, after removing b, are not connected with the sink t and all of them have bigger 
value of P then P(b). In opposite case, the answer is TRUE, together with a new tree 
rooted at t and list of unconnected nodes.  At the beginning, the procedure 
CONNECTION (in lines 2 – 8) checks out whether b is a leaf in T. If it is true, than 
the tree obtained from T by removing b connects remain nodes of T.  When b is not a 
leaf, we have more work. In lines 12-15 each descendant of b is color in red and 
removed from VT. Then for each red element it is checked whether there is a link 
between it and some node from VT (nodes for which we know that they are connected 
with the sink). If it is connected, it is colored in gray and added to the tree (d is put as 
a parent of c and c is put into DescadentList of d, lines 20-21). Now if there not gray 
nodes, it is clear that nodes in VT are not connected, otherwise, we are not sure yet. So 
we use BFS, started from the gray nodes and add to the tree all gray nodes to which 
we arrive. If you still have red nodes, there are nodes that are not in VT and we mark 
isconect as True. In opposite, we mark isconect as False.   

 



1  Procedure CONNECTION (G, Т=(VT, DescedentList,�), b) 
        Output{{True, Т=(DescedentList,�)}; 

 If DescedentList(b)==� then  // if b is leaf  
5            isconect = True 

     remove b from the DescadentList(�(b)) 
     �(b)=NILL 
      else 
     Gray=� 

10     M=Red=DescedentList(b) 
     VT=VT\M 
     while M != � do 
  c =First(M); 
  M=(M\{c})� DescedentList(c) 
  Red=Red� DescedentList(c); 

15  VT=VT\ DescedentList(c)  
      for all c � Red do 

              if there is d such that {c, d} � E and d � VT  
   then  

    Gray=Gray � {c}; 
20    �(c)=d 
    DescedentList(d)= DescedentList(d) � {c} 

      while Gray != � do 
               f=First(Gray); 

25               Gray=Gray/{f}; 
  VT=VT�{f}; 
  DescedentList(f)={u|{u, f} � V and  u �Red} 

  Gray= Gray � DescedentList(f) 
  Red=Red/ DescedentList(f)  
  for all u� DescedentList(f) do �(u)= f 

30       if Red != � then isconnect = False else isconnect = True 
   if isconnect=False then output={False, Red, Т=(VT, DescedentList,�)) }  

     else output={True, Т=(VT, DescedentList,�))  
  print ( output )  

      end{procedure} 
 
 As a illustration of the algorithm, we give following example. 
 
Example 3.1. Let us consider how the algorithm works on the network given on Fig 
2, with source node 1 and sink node 7. The tree rooted at 7 is shown on the Fig. 2 b.
 At the beginning A={{B1={{1, 2}, {1, 3}}, B2={2, 3}, B3={1}, T={{7,{2, 3}}, {2, 
{5, 4}}, {3, {6}}, {4, �}, {5, �}, {6, �}}}. 
 By the first step, when the procedure CONECTION is call for the first element 2,  it 
is illustrates how the algorithm works with irrelevant links.  2 is not a leaf, so the 
nodes 4 and 5 are put in Red, and move from T. 4 is connected by 6, so it is color in 
gray and it is connects by the tree through the node 6. 5 is not connected with some 



node from T, and after leaving the procedure CONECTION, Red={5}. New tree is 
{{7,{3}}, {3, {6}}, {6, {4}}, {4, �}}  Now, min{5}=5>2, so we obtain the minimal 
cut set {{1, 3}, {2, 4}, {2, 7}}. In fact the element  

{{{1, 3}, {2, 4}, {2, 7}}, {3, 4}, {1, 2, 5},{{{7,{3}}, {3, {6}}, {6, {4}}, {4, �}}} 
(2) 

 is added to A. 
 Next we call CONECTION for the element 3, which is a leaf, so the node 6 is put 
in Red, and move from T. But 6 is connect by 4 and Red becomes �. The element 

{{{1, 2}, {3, 6}, {3, 7}}, {6}, {1, 3}, {{{7,{2}}, {2, {4, 5}}, {4, {6}}, {6, �},  
{5, �}}}                    (3) 

is added to A. This is an illustration of the case when the node b is not a leaf, but all 
other vertices are connected with the sink. 
 By the next step we also illustrate one of the characteristics cases. (2) is taken, and 
CONNECTION is called for 3. The nodes 6 and 4 are added into Red. When we 
remove 3, these nodes are not connected with the sink. But min{4, 5}=4>3, so 4 and 6 
are added in B3. So as a minimal cut set we obtain {{2, 7}, {3, 7}} and as a B2, �. So 
from this element we do not obtain another cut set.  
 

  
 Fig.2. Two-terminal network with source node 1 and sink node 7. 
 

Next step is a characteristics case when we add a leaf in B3. In fact, CONNECTION is 
called for 4 which is a leaf in (2), so immediately we add  

{{{1, 3}, {6, 4}, {2, 7}}, {6}, {1, 2,  4, 5},{{{7,{3}}, {3, {6}}, {6, �}}} (4) 
into A. 
 We are finished with (2) and take (3). We have only one element in B2, 6, which is 
a leaf and the cut set we obtained from here is {{1, 2}, {2, 7}, {6, 4}}. Node 4 is 
connected by node 6, and it is note found as a vertex in the set of links {{1, 2}, {3, 6}, 
{2, 7}}. So we add 4 in B2 and put in A the element 
{{{1, 2}, {4, 6}, {3, 7}}, {4}, {1, 3, 6}, {{{7, {2}}, {2, {4, 5}}, {4, �},{5, �}}}  (5) 
 Now we take (4) and add the node 6 into B3. B2 becomes empty, since 6 is connect 
by 4 which is in  B3, and 3 which is a node in B1. Tne minimal cut set obtained from 
here is {{1, 3}, {6, 3}, {2, 7}}. Similarly from (5) we obtain {{1, 2}, {4, 2}, {3, 7}} 
as a minimal cut set and the algorithm ends. 
  



4   Analysis of the algorithm 

This section will prove that the proposed algorithm for finding the minimal cut sets 
for a connected undirected network works correctly.  
 
Proposition 2.1 Let MINIMAL_CUT_SET is terminate on the graph G(V, E).  After 
each iteration of the while loop, the graph G1(B3, {{u, v}| u, v � B3}) is a connected 
graph, such that s � B3. 
Proof  It is clear that G1({s}, �) is a connected graph. In each iteration of the loop we 
take an element of A={B1, B2, B3, T} and add one new elements in B3. Suppose that 
for all integer smaller or equal to k, if |B3| < k, then G1(B3, {{u, v}| u, v� B3}) is 
connected. Let B’3 is obtained from some B3, such that |B3| < k, by adding new set of 
nodes Red�{v}. It is clear that the subgraph of G consisting of these nodes is 
connected. Moreover, since G is connected graph, this subgraph is connected with 
some node u � B3. So B’3 is also connected and s � B’3 � B3. 

 
Proposition 2.2 Let CONNECT is called from the connected graph G, the tree T of 
nodes from G, rooted in t and a node b	 t from T. Let G2({u| is in T}/{b}, {{u, v}| u, 
v�{u| is in T}/{b}). Then CONNECT gives False when G2 is not connected, and 
True, together with a tree that connects the nodes from G2, when G2 is connected 
graph. 
Proof First suppose that G2 is not connected. Then there is a node u such that there is 
no link from t to u in G2. We claim that all paths in G’2({u| u is in T}, {{u, v}| u, v � 
{u| u is in T}) pass through b (if it is not true, there is a path in G2 from t to u). So, u 
must be a descendant of b in T and u is colored red in the line 14 and it is deleting 
from VT in line 15. Since u is not connected with some node from VT, u remains red 
after line 29. Now we claim that there is not a path from some gray node v, to u. If it 
is true, then there is a path t�a�u�v, {a, u} � E, a�VT such that b is not on that 
path which is a contradiction. So, in line 30 the set Red	� and CONNECT provides 
an answer False. 

Now suppose that G2 is connected. We need to proof that after the termination of 
the procedure CONNECT, Red = �. Since CONNECT is call when b is not a leaf, 
after line 16, Red	�. Let u � Red. Since G2 is connect, there is a path from t to u in 
G2 do not passes through b. Suppose that the first node which lies on the path from t 
to u and it is a descendant of b in T is a. a will be added in to new tree in the lines 19-
21. u will be added into new tree in lines 23-29, since this part of the algorithm is a 
part of BFS. 
 
Theorem 2.1 Program MINIMAL_CUT_SET is consists of all minimal cut sets of a 
given graph G(V, E). 
Proof From Proposition 2.1 and Proposition 2.2 follows that each element we put into 
CutSet divide the graph G into two connected components, such that s is in one of 
them and t is in the other. So each element in CutSet is a minimal cut set. 

It remains to prove that all minimal cut sets will be added to CutSet. This will be 
proved by induction in respect to the number of elements in B3.  



It is clear that the only set B3 with one element is {s}. Suppose that all minimal cut 
sets that separate V into B3 and V/ B3, such that |B3|�k, are added into CutSet. Let C 
divides G into two connected graphs G1(B3, {{x, y}| x, y � B3}) and G2(V/B3, {{x, y}| 
x, y � B3}) and let b � B3 such that P(b)=max{P(x)|x� B3 and there is a link {x, y}�E 
and y� B3}. Define S0={b}, Sk={x� B3| P(x) � P(b) and {x, y}� E, y � Sk-1}. It is clear 
that there is finite number of such sets, so let S = �

k
kS  and that S1 is the set of all 

neighbors of b in G1. We will regard two cases: 
I case: By removing the nodes from S, G’1(B3\S, {{x, y}| x, y � B3\S}) is 

connected. This case will be divided into two subcases, when all neighbors of b in G1 
have greater value of P then b and when there is a neighbor x of b in G1 such that 
P(x)<P(b). 

Regard how we will obtain C when all neighbors of b in G1 have greater value of 
P then b, i.e. the set of neighbors of b in G1 is S1. Let a � S1 is the node with the 
smallest value of P such that it is connect with some node from B3\ (S1� {b}). Take 
the smallest subgraph from G1, such that b and all neighbors of b in G1\{a} are not in 
them. This graph and the rest of the graph G, (which is connect, since all nodes in it 
are connected by b and b is connect with the rest of the graph) separate G into two 
connected components and all links that are not in it constitute an minimal cut set. 
From the inductive assumption this minimal cut set is obtained by the algorithm. 
Moreover, b is in the corresponding list B2, (it is add by the second part of the formula 
of B2). Now, if S={b}, C is obtained in lines 15-19, in opposite, in lines 22-27. 

In the opposite, the graph G’1 and the rest of the G separate G into two connected 
components and b is added into the corresponding list B2 by the first part of the 
formula for B2. So again if S={b}, C is obtained in lines 15-19, in opposite, in lines 
22-27. 

 
II case: By removing the nodes from S, G’1(B3\S, {{x, y}| x, y � B3\S}) is not 

connected. Let )'ˆ,'ˆ('ˆ EVG  is the connected component of G’1 in which s belongs, and 

'Ĝ  is the graph })'ˆ,|},{{,'ˆ(ˆ SVyxyxSVG ��� .  Since for the nodes in G’ that have 
smallest value of P then b, the shorter path in G is shorter then the shorter path in G’. 
This path must pass true nodes that are not in G’, so, such nodes are connected by 
some other nodes from G2 i.e. Ĝ  and })'ˆ,|},{{),'ˆ/((ˆ

1 SVyxyxSVVG ���  separate 
G into two connected components and from the inductive assumption the appropriate 
minimal cut set is obtained. The nodes with smaller values of P are added in B2 by the 
second part of the union.  

Look at the graph 1Ĝ . Let b’ is a node in 1Ĝ  such that P(b’)=max{P(x)|x� B3,  
CSVBx )'ˆ(3 ��� and there is a link {x, y}�E and y� B3}. Define S’0={b}, 

S’k={ CSVBx )'ˆ(3 ��� | P(x)�P(b’) and {x, y}� E, y � S’k-1} and S’ = �
k

kS ' . 

There two cases again, by removing the nodes from S’, the rest of the graph is 
connected and by removing the nodes from S’, the rest of the graph is unconnected. 
These two cases are considered in the same way as cases I and II. This can be 



repeated until we get connected graph. Since G has a finite number of nodes, the 
procedure will finish. 

 
 

At the and, let us regard the complexity of the proposed algorithm. Each minimal 
cut set is obtained only once, but, as a set of nodes B3, there obtained some 
combination that not lead to minimal cut set. The good think is that each set B3 is 
obtained at most once.   So, the worst case is when all subsets of V/{t} are acquired as 
a set B3. This is obtained for complete graph only, but in this case, each candidate for 
a minimal cut set is actually a minimal cut set. From this we have that for a graph 
with |V| nodes the procedure CONNECTION is call at most 2|V|-1 times.  

In the algorithm proposed in [1] has the same complexity in finding candidates for 
minimal cut sets, but the candidates for minimal cut set that are not minimal are 
rejected by comparison with  all other candidates. In that comparison it is determine 
whether there is a set in the list of candidates for minimal cut set which is a subset of 
the given set of links, and if so, it is rejected from the list. So, in order to reject all 
candidates from the list of N candidates, it is needed to make �(N2) comparisons 
between sets. 

In our algorithm we have a procedure for determining whether a given cut set is 
minimal. In this procedure we make BFS on part of the network. In most of this cases 
there are very few nodes on which we make BFS. In fact, in dense graphs, the 
procedure CONNECTION is called frequently, but in most of the cases, the node 
from which it is called is a leaf or has a small number of descendents, so the 
complexity of the procedure is constant. For example, for complete graph, the 
procedure CONNECTION is called only for leaves. 

 

6   Conclusion 

The detailed analysis of the proposed algorithm indicates that it correctly gives all the 
minimal cut vectors for a given two-terminal undirected network. It is characteristic 
that this algorithm works for undirected networks that are less discussed in the 
literature. Because the cycles of such networks are inevitable, by minor modification 
it can be modified to work for directed networks in which the cycles are allowed. 
Also, this algorithm avoids getting cut sets that are not minimal cut sets. This avoids 
the additional complexity of the program as a result of rejection of those sets. 
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