
318 Proceedings of the Second International Conference on Informatics and Information Technology

PHYSICAL DATABASE DESIGN FOR DATA WAREHOUSES

G. Velinov1, M. Kon-Popovska2

1Department of IT Development, Mobimak AD – Skopje
2Institute of Informatics, Faculty of Natural Sciences and Mathematics

Sts. Cyril and Methodius University
Arhimedova bb, P.O.Box 162, Skopje, Macedonia

goran@mobimak.com.mk; margita@ii.edu.mk

Abstract: Data warehousing has quickly evolved into a unique and popular
business application class. A data warehouse stores materialized views of data
from one or more remote sources, with the purpose of efficiently implementing
decision support or OLAP (On-Line Analytical Processing) queries. One of more
important decisions in designing data warehouse is the selection of materialized
views to be maintained at the warehouse.

The first part of this paper briefly introduces key concepts surrounding data
warehousing system. The second part studies how to select the set of supporting
views and indexes to materialize to minimize the total query response time and
cost of maintaining the selected views.

Keywords: data warehouses, physical database design, data cube, view selection

1. Introduction
Decision Support Systems (DSS) are computer-based systems that are used to
assist human decision makers in solving semi-structured and unstructured prob-
lems. However, the major problem with developing effective decision support
systems is the availability of data, which can be represented in a form that is eas-
ily understood by the decision maker. Relational databases are based on the rela-
tional model and are the de facto standard for storing and retrieving data and are
widely used in most organizations. However, relational databases are optimized
for transaction processing and are extremely efficient in storing and updating the
data. Most applications of relational databases have aimed at facilitating or meet-
ing the requirements for transaction processing, operational control, or manage-
ment control. Therefore the major concerns of these systems have been at the
lower levels of the data, dealing primarily with raw data.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 319

The relational model is quite inadequate for analyzing data. Most business man-
agers need to analyze information on-line and in a dynamic fashion. In a recent
paper states that the relational database systems were never intended to provide
powerful functions for data synthesis, analysis, and consolidation.
Data warehousing is a concept that is gaining increasing popularity because of
the need for quality data. Data warehousing is the creation of a specialized data-
base to help support decision-making. Because of the problems associated with
relational databases, the solution now is to create a specialized database, which
extracts data from the conventional databases and stores them in a single large
server or database. This data store or warehouse typically consists of enterprise
data from diverse production systems and is an approximation of the entire en-
terprise data.
The data warehouse is usually updated by batch processing on a periodic basis,
and is therefore a more static or historical model of the enterprise data. Once the
data warehouse is populated, the data is essentially static and does not change till
the next time the warehouse is updated. The data warehouse is created to satisfy
the needs of decision makers and has a different structure and representation that
is more intuitive and responsive to managerial queries.
The data warehouse is usually developed as a central data store, which provides
data in the format that is understandable by the users. The data warehouse pro-
vides a traditional, highly manageable data center for DSS, ensuring that the data
is readily available and quickly accessible by the users. The data warehouse is
not just a copy of the data in other systems. It is a unique, enriched data set that is
optimized for decision support.
The data warehouse creation and management component includes software
tools for selecting data from information sources (which could be operational,
legacy, external, etc. and may be distributed, autonomous and heterogeneous),
cleaning, transforming, integrating, and propagating data into the data ware-
house. It also refreshes the warehouse data and meta-data when source data is
updated. This component is also responsible for managing the warehouse data,
creating indices on data tables, data partitioning and updating meta-data. The
warehouse data contains the detail data, summary data, consolidated data and/or
multidimensional data. The meta-data is generally held in a separate repository.
The meta-data contains the informational data about the creation, management,
and usage of the data warehouse. It serves as a bridge between the users of the
warehouse and the data contained in it. The warehouse data is also accessed by
the On-Line Analytical Processing (OLAP) server to present the data in a multi-
dimensional way to the front end tools (such as analytical tools, report writers,
spreadsheets and data mining tools) for analysis and informational purposes. Ba-
sically, the OLAP server interprets client queries (the client interacts with front

320 Proceedings of the Second International Conference on Informatics and Information Technology

end tools and pass these queries to the OLAP server) and converts them into
complex SQL queries required to access the warehouse data. It might also access
the data from the primary sources if the client's queries need operational data.
Finally, the OLAP server passes the multidimensional views of data to the front
end tools, and these tools format the data according to the client's requirements.
One approach to provide this unique and enriched view of the data is to use mul-
tidimensional databases (MDDB). Multidimensional databases are specialized
databases designed to facilitate multidimensional data analysis and decision sup-
port. MDDB-s store numeric or quantitative data, which is categorized over sev-
eral qualitative dimensions. For example, a MDDB may store sales data (quanti-
tative) for several product lines, in several different cities, for each month (3
qualitative dimensions). The user will then be able to retrieve data on any spe-
cific combination of these dimensions as well as perform aggregations and con-
solidations. For example, a manager might be interested in obtaining the sales
figures for Product X in City Y for Dec. 2001 or obtain the Total Sales for Prod-
uct X in City Y for 2001.
A MDDB has a database management system (MDDBMS), which provides the
user with the capability to analyze this data by providing tools for flexible, ad
hoc data analysis. This end user oriented data analysis system provides users
with the capability for sophisticated data analysis without requiring programming
language knowledge or support form the Information Systems (IS) personnel.
This system insulates the user from having to master the intricacies of data stor-
age and access mechanisms.
The warehouse data is typically modeled multidimensional. The multidimen-
sional data model has been proved to be the most suitable for OLAP applica-
tions. OLAP tools provide an environment for decision-making and business
modeling activities by supporting ad-hoc queries. There are two ways to imple-
ment multidimensional data model:

• By using the underlying relational architecture to project a
pseudo-multidimensional model and

• By using true multidimensional data structures like arrays.
We discuss the multidimensional model and the implementation schemes in Sec-
tion 2.

2. Data Models for a Data Warehouse

The data models for designing traditional OLTP (On-Line Transaction Process-
ing) systems are not well suited for modeling complex queries in data warehous-
ing environment. The transactions in OLTP systems are made up of simple,
pre-defined queries. In the data warehousing environments, the queries tend to

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 321

use joins on more tables, have a larger computation time and are ad-hoc in na-
ture. This kind of processing environment warrants a new perspective to data
modeling. The multidimensional data model i.e., the data cube turned out to be
an adequate model that provides a way to aggregate facts along multiple attrib-
utes, called dimensions. Data is stored as facts and dimensions instead of rows
and columns as in relational data model. Facts are numeric or factual data that
represents a specific business activity and the dimension represents a single per-
spective on the data. Each dimension is described by a set of attributes.
A multidimensional data model (MDDM) supports complex decision queries on
huge amounts of enterprise and temporal data. It provides us with an integrated
environment for summarizing (using aggregate functions or by applying some
formulae) information across multiple dimensions. MDDM has now become the
preferred choice of many vendors as the platform for building new on-line ana-
lytical processing (OLAP) tools. The user has the leverage to slice and dice the
dimensions, thereby, allowing him/her to use different dimensions during an in-
teractive query session. The data cube allows the user to visualize aggregated
facts multidimensional. The level of detail retrieved depends on the number of
dimensions used in the data cube. When the data cube has got more than 3 di-
mensions, then it is called the hyper cube. The dimensions form the axes of the
hypercube and the solution space represents the facts as aggregates on measure
attributes.

2.1 Implementation Schemes
The conceptual multidimensional data model can be physically realized in two
ways, (1) by using traditional relational databases, called ROLAP architecture
(Relational On-Line Analytical Processing) or (2) by making use of specialized
multidimensional databases, called MOLAP architecture (Multidimensional
On-Line Analytical Processing). The advantage of MOLAP architecture is that it
provides a direct multidimensional view of the data whereas the ROLAP archi-
tecture is just a multidimensional interface to relational data. On the other hand,
the ROLAP architecture has two major advantages: (i) it can be used and easily
integrated into other existing relational database systems, and (ii) relational data
can be stored more efficiently than multidimensional data. We will briefly de-
scribe in details each approach.
2.1.1 Relational Scheme
This scheme stores the data in specialized relational tables, called fact and di-
mension tables. It provides a multidimensional view of the data by using rela-
tional technology as an underlying data model. Facts are stored in the fact table
and dimensions are stored in the dimension table. Facts in the fact table are
linked through their dimensions. The attributes that are stored in the dimension

322 Proceedings of the Second International Conference on Informatics and Information Technology

table may exhibit attribute hierarchy. Example 1 Let us consider a star schema
from. It models the sales activities for a given company. The schema consists of
three dimension tables CUSTOMER, PRODUCT, and TIME, and one fact table
SALES. The tables and attributes of the schema are shown in Figure 1.

SALESPRODUCT

PiD :4 bytes
SKU :25 bytes
Brand :10 bytes
Size :4 bytes
Weight :4 bytes
Package_type :4 bytes
 51 bytes

300, 000 rows

CUSTOMER

CiD :4 bytes
Gender :1 bytes
City :25 bytes
State :25 bytes
Hobi :4 bytes
 59 bytes

3, 000, 000 rows

TIME

TiD :2 bytes
Date :16 bytes
Month :25 bytes
Year :4 bytes
Seasin :4 bytes
 59 bytes

1, 000 rows

CiD :4 bytes
PiD :4 bytes
TiD :2 bytes
M_Sales :8 bytes
M_Sales :8 bytes
Unit_Sales :8 bytes
 34 bytes

100, 000, 000 rows

LEGEND:

:Fact Table

:Dimension Table

Foreign Key

Attribute: Key Attribute

Attribute: Non Key attribute

Figure 1: An Example of a Star Schema

Star schema schema is used to support multidimensional data epresentation. It
offers flexibility, but often at the cost of performance because of more joins for
each query required. A star/snowflake schema models a consistent set of facts
(aggregated) in a fact table and the descriptive attributes about the facts are
stored in multiple dimension tables. This schema makes heavy use of de-
normalization to optimize complex aggregate query processing. In a star schema,
a single fact table is related to each dimension table in a many-to-one (M:1) rela-
tionship. Each dimension tuple is pointed to many fact tuples. Dimension tables
are joined to fact table through foreign key reference; there is a referential integ-
rity constraints between fact table and dimension table. The primary key of the
fact table is a combination of the primary keys of dimension tables. Note that
multiple fact tables can be related to the same dimension table and the size of
dimension table is very small as compared to the fact table. As we can see in
Figure 1, the dimension table TIME is de-normalized and therefore, the star
schema does not capture hierarchies (i.e. dependencies among attributes) di-
rectly. This is captured in snowflake schema. Here, the dimension tables are
normalized for simplifying the data selecting operations related to the dimen-
sions, and thereby, capture attribute hierarchies. In this schema, the multiple fact
tables are created for different aggregate levels by pre-computing aggregate val-
ues. This schema projects better semantic representation of business dimensions.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 323

The Figure 2 shows an example of snowflake schema after TIME dimension ta-
ble in Figure 1 has been normalized.

SALESPRODUCT

PiD :4 bytes
SKU :25 bytes
Brand :10 bytes
Size :4 bytes
Weight :4 bytes
Package_type :4 bytes
 51 bytes

300, 000 rows

CUSTOMER

CiD :4 bytes
Gender :1 bytes
City :25 bytes
State :25 bytes
Hobi :4 bytes
 59 bytes

3, 000, 000 rows

TIME

TiD :2 bytes
Date :16 bytes

CiD :4 bytes
PiD :4 bytes
TiD :2 bytes
M_Sales :8 bytes
M_Sales :8 bytes
Unit_Sales :8 bytes
 34 bytes

100, 000, 000 rows

LEGEND:

:Fact Table

:Dimension Table

Foreign Key

Attribute: Key Attribute

Attribute: Non Key attribute

YEAR

TiD :2 bytes
Year :4 bytes

MONTH

TiD :2 bytes
Month :4 bytes
Season :4 bytes

Figure 2: Snowflake Schema Example

A star schema/snowflake schema is usually a query-centric design as opposed to
a conventional update-centric schema design employed in OLTP applications.
The typical queries on the star schema are commonly referred to as star-join que-
ries, and exhibit the following characteristics:

• There is a multi-table join among the large fact table and multiple smaller
dimension tables, and

• Each of the dimension tables involved in the join has multiple selection
predicates on its descriptive attributes.

2.1.2 n-dimensional Scheme
This scheme stores data in a matrix using array-based storage structure. Each cell
in the array is formed by the intersection of all the dimensions, therefore, not all
cells have a value. The multi-dimensional data set requires smaller data storage
since the data is clustered compactly in the multidimensional array. The values of
the dimensions need not be explicitly stored. The n-dimensional table schema is
used to support multidimensional data representation which is described next. An
n-dimensional table schema is the fundamental structure of a multidimensional
database which draws the terminology of the statistical databases. The attribute
set associated with this schema is of two kinds: parameters and measures. An

324 Proceedings of the Second International Conference on Informatics and Information Technology

n-dimensional table has a set of attributes R and a set of dimensions D associated
with it. Each dimension is characterized by a distinct subset of attributes from R,
called the parameters of that dimension. The attributes in R which are not pa-
rameters of any dimension are called the measure attributes. This approach is a
very unique way of f lattening the data cube since the table structure is inherently
multidimensional. The actual contents of the table are essentially orthogonal to
the associated structure. Each cell of the data cube can be represented in an
n-dimensional table as table entries. These table entries have to be extended by
certain dimensions to interpret their meaning. The current literature on an
n-dimensional table however does not give an implementation of the MDDB
which is different from the implementation suggested by the already existing
schemas. This implementation breaks up the n-dimensional table into dimension
tables and fact tables which snowballs into snowflake schema and traditional
ROLAP. The challenge with the research community is to find mechanisms that
translate this multidimensional table into a true multidimensional implementa-
tion. This would require us to look at new data structures for the implementation
of multiple dimensions in one table. The relation in relational data model is a
classic example of 0-dimensional table.

2.2 Constraints on the Cube Model
In a relational schema, we can define a number of integrity constraints in the
conceptual design. These constraints can be broadly classified as key constraints,
referential integrity constraints, not null constraint, relation-based check con-
straints, attribute-based check constraints and general assertions (business rules).
These constraints can be easily translated into triggers that keep the relational
database consistent at all times. This concept of defining constraints based on
dependencies can be mapped to a multidimensional scenario. The current litera-
ture on modeling multidimensional databases has not discussed the constraints
on the data cube. In a relational model, the integrity and business constraints that
are defined in the conceptual schema provide for efficient design, implementa-
tion and maintenance of the database. Taking a cue from the relational model, we
need to identify and enumerate the constraints that exist in the multidimensional
model. An exploratory research area would be to categorize the cube constraints
into classes and compare them with the relational constraints. The constraints can
be broadly classified into two categories: intra-cube constraints and intercube
constraints.. The intra-cube constraints define constraints within a cube by ex-
ploiting the relationships that exist between the various attributes of a cube. The
relationship between the various dimensions in a cube, the relationships between
the dimensions and measure attributes in a cube, dimension attribute hierarchy
and other cell characteristics are some of the key cube features that need to for-

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 325

malized as a set of intra-cube constraints. The inter-cube constraints define rela-
tionships between two or more cubes. There are various considerations in defin-
ing inter-cube constraints. Such constraints can be defined by considering the
relationships between dimensions in different cubes, the relationships between
measures in different cubes, the relationships between measures in one cube and
dimensions in the other cube and the overall relationship between two cubes, i.e.,
two cubes might merge into one, one cube might be a subset of the other cube,
etc.

2.3 Operations in Multidimensional Data Models
Data warehousing query operations include standard SQL operations, such as
selection, projection and join. In addition, it supports various extensions to ag-
gregate functions, for example, percentile functions (e.g. top 20 percentile of all
products), rank functions (e.g. top 10 products), mean, mode, and median. One of
the important extension to the existing query language 6 is to support multiple
`group by' by defining roll-up, drill-down, and cube operators.
Roll Up: Refers to the process of moving up a dimension hierarchy to obtain
more aggregated views of the data. This process is also called roll up, as it refers
to the movement from lower to higher levels in the hierarchy. For example, a
simple roll up involves consolidating Cities into States, and States into Regions.
Drill-Down: This operation refers to the process of drilling down to obtain detail
data. Drill down is useful when analyzing a cause or effect for some observed
phenomena in the aggregate data.
Slice and Dice: This is the ability to look at the database from different view-
points. For example, the analyst may wish to view Sales data dimensioned by
Product and Region only with Period values being consolidated.
The hypercube which involves joining of multiple tables to represent facts needs
a new set of algebraic operations. A new algebra needs to be proposed for the
multidimensional environment. The idea of faster query processing requires an
extension to existing SQL in the existing environment. New operators like cube,
push, pull, restrict, star join and merge have been proposed in literature but all
these operators are very specific to the schema for which they are designed.

3. The view-index selection problem
Data warehouses collect information from many sources into a single database.
This allows users to pose queries within a single environment and without con-
cern for schema integration. Figure 3 shows a typical warehousing system. Rela-
tions Rsrc, Ssrc, and Tsrc, referred to as source relations, from sources 1, 2, and 3
respectively, are replicated at the warehouse as R, S, and T in order to answer

326 Proceedings of the Second International Conference on Informatics and Information Technology

user queries posed at the warehouse such as R S T. We refer to the repli-
cated relations R, S, and T as warehouse relations. Consistency between the
source relations and the warehouse relations is usually only loosely maintained:
Changes to the source relations are queued and periodically shipped to the ware-
house where they are applied to the warehouse relations. We call these changes
deltas.
Queries posed at a data warehouse are often complex - involving joins of multi-
ple relations as well as aggregation. Due to the complexity of these queries,
views are usually defined is a derived relation expressed in terms of the ware-
house relations. Because the views are defined in terms of the warehouse rela-
tions, we refer to the warehouse relations also as base relations in this paper. For
example, referring again to Figure 3, RST represents a view that is the expression
R S T. Warehouses can store huge amounts of data, and so in order to im-
prove the performance of queries written in terms of the views, the views are of-
ten materialized by storing the result of the view at the warehouse. Unmaterial-
ised views are called virtual views. Queries written in terms of materialized
views can be significantly faster than queries written in terms of virtual views
because the view tuples are stored rather than having to be recomputed.

R S T

RST

Source 1

Rsrc

Source 1

Rsrc

Source 1

Rsrc

R S T=?

Warehouse

R S T

RST

Source 1

Rsrc

Source 1

Rsrc

Source 1

Rsrc

R S T=?

Warehouse ST

Figure 3: Warehouse with primary
view

Figure 4: Warehouse with support-
ing view

Since materialized views are computed once and then stored, they become incon-
sistent as the deltas from the sources are applied to the base relations. In order to
make a materialized view consistent again with the base relations from which it
is derived, the view may either be recomputed from scratch, or incrementally
maintained by calculating just the effects of the deltas on the view. These effects
are captured in view maintenance expressions. Each type of change (insertion,
deletion, or update) requires a different expression. For example, if view RST in
Figure 3 is materialized, the maintenance expression calculating the tuples to in-
sert into RST due to insertions into R is R S T , where R denotes the
insertions into R.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 327

Since the sizes of the views at a warehouse are usually so large and the changes
small in comparison, it is often much cheaper to incrementally maintain the view
than to recompute it from scratch. Incrementally maintaining a number of mate-
rialized views at a warehouse, even though cheaper than recomputing the views
from scratch, may still involve a significant processing effort. To avoid impact-
ing clients querying the warehouse views, view maintenance is usually per-
formed at night during which time the warehouse is made unavailable for an-
swering queries. A major concern for warehouses using this approach is that the
views be maintained in time for the warehouse to be available for querying again
the next morning. An important problem for data warehousing is thus: Given a
set of materialized views that need to be maintained due to a set of deltas shipped
from the data sources, how is it possible to reduce the total maintenance time?
One approach to the problem of minimizing the time spent maintaining a set of
views may seem counter-intuitive at first: add additional structures to be main-
tained. However, this is analogous to building indexes in traditional RDBMS's.
For example, having an index on the key of a relation can vastly decrease the to-
tal time spent locating and deleting a particular tuple even though the index must
be maintained as well. In this paper we will approximate maintenance time as the
number of I/O's required and then endeavor to minimize the number of I/O's per-
formed. We will do this by adding a set of additional views and indexes that
themselves must be maintained, but whose benefit (reduction in I/O's) outweighs
the cost (increase of I/O's) of maintaining them.
As an example, let us return to Figure 3. Suppose that in addition to materializing
the primary view, RST , another view, ST , is also materialized. This situation is
shown in Figure 4. By materializing view ST , the total cost of maintaining both
RST and ST can be less than the cost of maintaining RST alone. For example,
suppose that there are insertions to R but no changes whatsoever to S and T . To
propagate the insertions to R onto RST , we must evaluate the maintenance ex-
pression that calculates the tuples to insert into RST due to insertions into R,
which is R S T . With ST materialized, it is almost certain that this ex-
pression can be evaluated more efficiently as R ST , joining the insertions to
R with ST , instead of with S and T individually. Even if there are changes to S
and T , the benefit of materializing ST may still outweigh the extra cost involved
in maintaining it. Since the view ST is materialized to assist in the maintenance
of the primary view RST , we call the view ST a supporting view.
In addition to materializing supporting views, it may also be beneficial to materi-
alize indexes. Indexes may be built on the base relations, primary views, and on
the supporting views. The general problem, then, is to choose a set of supporting
views and a set of indexes to materialize such that the total maintenance cost for
the warehouse is minimized. This is the View-Index Selection (VIS) problem.

328 Proceedings of the Second International Conference on Informatics and Information Technology

Section 4 describes the VIS problem in detail. It also introduces the exhaustive
search algorithm.

4. General Problem
Having introduced the VIS problem, in this section we will describe it fully and
develop an exhaustive algorithm to obtain the optimal solution. The exhaustive
algorithm is then decomposed to show the complexity of the VIS problem.
Lastly, we present an example schema to illustrate the concepts introduced.

4.1 The Optimization Problem
In developing an optimal algorithm, we must minimize the total cost of maintain-
ing the warehouse. The cost that we attempt to minimize is the sum of the costs
of: (1) applying the deltas to the base relations, (2) evaluating the maintenance
expressions for the materialized views, and (3) modifying affected indexes. The
cost of maintaining one view differs depending upon what other views are avail-
able. It is therefore incorrect to calculate the cost of maintaining the original view
and each of the additional views in isolation. Moreover, in order to derive the
cost for maintaining a set of views it is necessary to consider the view selection
and index selection together. If view selection is performed separately from in-
dex selection, it is not hard to imagine cases wherein a supporting view V is con-
sidered to be too expensive to maintain without indexes, but where V is actually
part of the optimal solution since it may become feasible to maintain when the
proper indexes are built. To find the optimal solution, then, we must exhaustively
search the solution space. Although exhaustive search is impractical for large
problems, it illustrates the complexity of the problem and provides a basis of
comparison for heuristics solutions. The exhaustive algorithm works as follows
(each stage is described below):
for each possible subset of supporting views

for each possible subset of indexes on the views and base relations
compute total update cost with views and indexes materialized and keep
track of the supporting views and indexes that obtain the minimum cost

4.1.1 Choosing the views
In the first step we consider all possible subsets of the set of candidate views C.
We consider as candidate views all distinct nodes that appear in a query plan for
the primary view. Since the primary view is already materialized, it is not in-
cluded in the candidate view set. For example, given a view V = R S T , C =
{RS; RT ; ST}. In general, for a view joining n relations there are roughly O(n2)
different nodes that appear in some query plan for the view, one joining each

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 329

possible subset of the base relations. Thus, to consider all possible subsets of C,
we need to evaluate roughly O(

n22) different view states.
4.1.2 Choosing the indexes
Now we must consider all possible subsets of the set of candidate indexes, I.
Candidate indexes are indexes on the following types of attributes:

• attributes with selection or join predicates on them
• key attributes for base relations where changes to the base relation in-

clude deletions or updates. When views are materialized on the base rela-
tions, key attributes of any base relation appearing in the view also qual-
ify.

• attributes in GROUP BY or ORDER BY clauses.
Additional attributes can be candidates depending on the query optimizer being
used. The reader is referred to for more detail.
Since each materialized view will usually have candidate indexes, I must be re-
computed at the beginning of every inner loop. The cardinality of I for a particu-
lar view state is roughly proportional to the number of materialized views and
base relations in that state. Further, a particular view state contains between n and
O(n2) materialized views and base relations, so there can be as many as O(n2)
candidate indexes to consider. Since we must evaluate possible subsets of candi-
date indexes, the number of possible index states for a view state can be up to
O(

n22).
4.1.3 Computing the total update cost
Once a particular view and index state are chosen, the cost of maintaining the set
of views is a query optimization problem since it involves finding the most effi-
cient query plan for each of the view maintenance expressions. Thus, the VIS
problem for a single primary view joining n base relations contains roughly
O(

n22) query optimization problems in the most general case. The query optimi-
zation itself is complicated by the presence of materialized views since the opti-
mizer must also determine if it can use another materialized view in the query
plan evaluating a maintenance expression. For example, given a view V =
R S T , insertions to R are propagated onto V by the maintenance expression

R S T . Suppose the view ST = S T is also materialized. The query op-
timization algorithm must consider the possibility of evaluating R S T as
4R ST in finding the best query plan. This problem is known as ``answering
queries using views''.
To further complicate matters, one batch of changes can generate multiple main-
tenance expressions that need to be evaluated. This happens due to different

330 Proceedings of the Second International Conference on Informatics and Information Technology

types of changes insertions, deletions, and updates) to the base relations. The
maintenance expressions can be optimized as a group because of possible com-
mon subexpressions. This problem is known as the ``multiple-query optimiza-
tion'' problem.
4.1.4 Cost Model
In this section we give some formulas for deriving the overall cost of maintaining
a set of views due to changes to the warehouse relations. The formulas are based
upon cost models for queries and updates appearing elsewhere. The formulas
represent a fairly accurate and detailed cost model, upon which we based our im-
plementation of an algorithm that used exhaustive search to find the optimal set
of supporting views and indexes for a given primary view.
The main formula given in this section is Costv(V), which is the cost of maintain-
ing a set of views V. The other formulas are used to support Costv(V). Note that
much of the statistical information for views can be derived from statistical in-
formation for the warehouse relations and the selectivities of local and join selec-
tion conditions. Table 1 gives our formula for Costv(V) and its supporting formu-
las. Note that Eval(expr) is the traditional query optimization cost function. In the
formulas we use R, R, and µR to represent the set of insertions, deletions,
and updates to R respectively.
Two more formulas need to be explained:

{),,(=kpnyao
kpp

pkppk
pkk

<
<=<+

<

2,
22/,3/)(

2/,

The yao function returns an estimate of the number of page read operations given
that k out of n tuples are read from a relation spanning p pages. The yao function
assumes that either the memory buffer is large enough to hold the entire relation,
or that the tuple accesses have been sorted beforehand so that tuples from the
same page will be requested one after the other. Since the assumption that a rela-
tion fits entirely in memory is unrealistic for a data warehouse and we assume
that tuple accesses are not usually sorted beforehand, our formulas often make
use of a function YWAP presented in for estimating the number of page read op-
erations given k tuple fetches and a memory buffer of m pages.

{),,(=kpnYWAP

mkmppmpmkm
mkmpk

mppk

>>−−+
<=>
<=

,,/))((
,,
),,min(

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 331

Name Formula code
)(VCostv)V(V vVCost∑ ∈ 1

)V(vCost
)V,R(Pr)V,R(Pr

)V,R((Pr)V(R

upddel

insR

opop

op

++
∑ ∈ 2

)V,R(Pr insop

)V,V(ApplayIx
)V,V(Applay

)V,V(Applay
)V...RREval(

ins

Rins

21

R

save
RR

RkR

∆+
∆∆+

∆+
∆→∆ ><><><

 3

)V,R(Pr delop
)V,V(ApplayIx

)V,V(Applay

)VREval(V

R

Ridelupd

R

∇+

∇+

∆→∇keyofR><

 4

)V,R(Applayins P(R) 5
)V,R(Applaydelupd yao(T(V), P(V), T(R)) 6

)V,R(ApplayIx
T(R)))R.A),P(V,(T(V),Y

1)-R.A)(H(V,*T(R)R.A),P(V,(T(V),Y(

WAP

WAPR.A

+
∑ ∈indexesV 7

Table 1a: Cost Formulas

332 Proceedings of the Second International Conference on Informatics and Information Technology

code Description
1 Derive cost to maintain a set of views by summing cost to maintain

each view.
2 Sum the cost of propagate changes to each relation into V
3 Evaluate effect on V of R, which we call VR , where {R1, R2,…,

Rk}=R(V) Insert VR into V. Save it for possible reuse as save
RV∆

(small cost anyway). Update indexes on V
4 Evaluate effect on V of R, which we call VR. Delete VR

from V. Update indexes on V
5 Append tuples in R to V
6 Delete or update tuples of R in V(R⊆V). Exact locations of tuples

of R in V are derived when R is derived. If index join is used to de-
rive R instead of nested-block join, then use

YWAP(T(V),P(V),T(R),Pm) instead of yao(T(V),P(V),T(R)).
7 For each index on V, sum approximate number of index pages to

read assuming root cached, plus approximate number of index pages
to write (leaves only).

Table 1b: Cost Formulas

4.2 Example
Consider the following base relations and view.
R(R0,R1), S(S0,S1), T(T0,T1)
create view V(R0,S1,T0,T1) as
select R.R0, S.S1, T.T0, T.T1
from R, S, T
where R.R1 = S.S1 and S.S0 = T.T0 and T.T1 != 10
T’ is the result of applying the selection condition to T . Under each view node is
the set of operations (join or select) that could be used to derive the view. For
example, the view RST could be derived as the result of R S joined with T’ , or
the result of R S joined with the result of S T’ , and so on. Each of the inter-
mediate results could be materialized as a supporting view. Following the defini-
tion in Section 4.1.1, the set of candidate supporting views, C, is {RS; ST’ ; RT’ ;
T’}. Assuming V is materialized at a data warehouse (and the base relations R, S,
and T are also materialized at the warehouse), any possible subset of C might
also be materialized as supporting views at the warehouse in order to minimize
the total maintenance cost. In addition, indexes on V, the base relations, and the
supporting views need to be considered.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 333

It is useful to think of the expression dag when considering the different update
paths changes to base relations can take as they are propagated to the view. An
update path corresponds to a specific query plan for evaluating a view mainte-
nance expression. For example, the maintenance expression for propagating in-
sertions to R onto V is to insert the result of into V. There are seven possible up-
date paths for this expression, two of which are: (1) (R S) T’, (2)

(R S)1(S T’), and so on. Notice that the choice of update path can affect
which indexes get materialized. If update path (1) is chosen, an index may be
built on the join attribute of T’ to help compute the maintenance expression. If
path (2) is chosen however and view ST’ is materialized, an index may be built
on the join attribute of ST’.
Changes to base relations need to be propagated both to the primary view as well
as to the supporting views that have been materialized. When propagating
changes to several base relations onto several materialized views there are oppor-
tunities for multiple-query optimization. Results of maintenance expressions for
one view can be reused when evaluating maintenance expressions for another
view. For example, suppose view RS = R S is materialized. The result of
propagating insertions to R onto RS, R S, can be reused when propagating
insertions to R onto V , R S T0 , so that only the join with T’ need be per-
formed. In addition, common subexpressions can be detected between several
maintenance expressions. For example, when propagating insertions to both R
and S onto V, it may be cheaper to evaluate the join with T’ once, as in
((4R S)[(Rn 4S)) T’, than to evaluate both R S T’ and
Rn 4S T’ individually. (We use Rn to denote RU R, the state of R after R
has been applied.)

5. Conclusion

In this paper, we illustrated the architecture of a multidimensional database sys-
tem and described a data model to represent multidimensional data. The concept
of data warehousing is gaining popularity as the means of providing efficient de-
cision support. Multidimensional databases are ideally suited for use as the un-
derlying database for developing data warehouses for decision support. This pro-
posed model will be used to represent and develop multidimensional databases,
and will provide an abstraction tool for designing these databases. Also, we con-
sidered the VIS problem, which is one aspect of choosing good physical designs
for relational databases used as data warehouses. We described and implemented
an algorithm to exhaustively search the space of possible views and indexes to
materialize. Given that exhaustive search is impractical for many real world
problems, we plan to develop heuristics for pruning the exhaustive search space
so that good solutions can be found through limited search.

334 Proceedings of the Second International Conference on Informatics and Information Technology

6. References
1. H. Gupta. Selection of Views to Materialize in Data Warehouse. In Proceed-

ings of the International Conference on Database Theory, Athens, Greece,
January 1997.

2. H. Gupta, I. Mumick. Selection of Views to Materialize Under a Mainte-
nance Cost Constraint. In Database Theory - ICDT '99, 7th International
Conference.

3. L. Bellatreche, K. Karlapalem. Logical and Physical Design in Data Ware-
housin Enviroment. Department of Computer Science University of Science
Technology Clear Water Bay Kowloon Hong Kong.

4. T.B. Pedersen, C.S. Jensen C.E. Dyreson. A fundation for capturing and que-
rying complex multidimensional data. Information Systems 26 (2001).

5. L.J. Labio, D. Quass, B. Adelberg. Physical Database Design for Data Ware-
houses. Paper Number 1138

6. V.R. Gupta. An Introduction to Data Warehousing
7. L. Bellatreche, K. Karlapalem, M. Mohania. Some Issues in Design of Data

Warehousing Systems. Department of Computer Science University of Sci-
ence Technology Clear Water Bay Kowloon Hong Kong.

8. A. Gupta, I.S. Mumick, J. Rao, K.A. Ross. Adapting materialized views after
redefinitions: techniques and a performance study. Information Systems 26
(2001).

