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Abstract: The goal of this research is to investigate the ways of processing the 
speech signals. Speech signals represented as an array of samples undergo a se-
ries of DSP techniques for extracting the key measures form the signal. Further 
more this signals are used into the process of speech recognition as the first part 
of the process. Here we will give an overview of these techniques and demon-
strate them using the MATLAB and SIMULINK package. The final goal is to 
build a parameters of the speech recognition engine for Macedonian language. 
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1. Introduction 
Parameterization of an analogue speech signal is the first step in the speech rec-
ognition process. Several signal analysis techniques are used. These algorithms 
are intended to produce a “perceptually meaningful” parametric representation of 
the speech signal: parameters that emulate some of the behavior observed in the 
human perceptual systems. Of course, and perhaps more importantly, these algo-
rithms are also designed to maximize recognition performance. 
In speaker independent speech recognition, main effort is placed on developing 
descriptions that are somewhat invariant to changes in the speaker. Parameters 
that represent characteristic spectral energies of the sound, rather than details of 
the particular speaker’s voice, are desired. Therefore signal modeling is used 
which means converting sequences of speech samples to observation vectors rep-
resenting events in a probability space. 
Signal modeling can be subdivided into four basic operations: spectral shaping, 
spectral analysis, parametric transformation and statistical modeling each de-
pending on the previous ones results. The first three operations are straightfor-
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ward problems in digital signal processing. The last task, however, is often di-
vided between the signal modeling system and the speech recognition system. 
The spectral shaping phase includes the pre-emphasis filtering of the input signal 
from the A/D converter in order to boost the signal spectrum towards the higher 
frequencies. The spectral analysis phase includes various dsp methods for ex-
tracting parameters from the signal. We will dedicate the biggest part from this 
paper into this phase. The parametric transform phase adds extra parameters to 
the parametric vector. The statistical modeling phase deals with modifications of 
the raw parameter vector giving better quality representation of the signal charac-
teristics. 

2. Spectral Analysis 
Before going into the spectral analysis we have to define few other fundamental 
concepts. 

2.1  Signal power 
A power of a signal or more precisely a measure of the power of the system is 
defined with the following function: 
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where Ns is the number of samples used to compute the power, s(n) denotes the 
signal, w(n) denotes a weighting function and n denotes the sample index (dis-
crete time) of the center of the window. Rather than using power directly, many 
speech recognition systems use the logarithm of the power multiplied by 10, de-
fined as the power in dB, in an effort to emulate the logarithmic response of the 
human auditory system. 
The weighting function in Equation 4 is referred to as a window function. There 
are many types of windows including rectangular, Hamming, Hanning, Black-
man, Bartlett, and Kaiser. Today, in speech recognition, the Hamming window is 
almost exclusively used. 
The Hamming window is a specific case of the Hanning window for аw = 0.54. 
A generalized Hanning window is defined as: 
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The purpose of the window is to weight, or favor, samples towards the center of 
the window. This characteristic, coupled with the overlapping analysis discussed 
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next, performs an important function in obtaining smoothly varying parametric 
estimates. 

 

Figure 1: Window and frame representation 

It can be seen from the calculation of the power that it is calculated on window 
basis (only the samples from the window are included into the calculation). Also 
every other parameter in the future will be calculated on window basis. The 
length of the window is Ns. Even though parameters will be computed over the 
window, they will be representing the frame characteristics. Frame duration, Tf, 
is defined as the length of time (in seconds) over which a set of parameters are 
valid. Frame duration typically ranges between 20 ms to 10 ms and window 
length 20ms to 30ms. Window and frame meaning can be seen in Fig. 1. 

2.2  Spectral analysis 
There are six major classes of spectral analysis algorithms used in speech recog-
nition systems today. The procedures for generating these analyses are summa-
rized in Fig. 2. It can be seen that they are grouped in three conceptual fields. 

 

Figure 2: Classes of spectral analysis algorithms 
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2.2.1  Digital Filter Bank 
The digital filter bank is one of the most fundamental concepts in speech proc-
essing. Experiments in human perception have shown that frequencies of a com-
plex sound within a certain bandwidth of some nominal frequency cannot be in-
dividually identified. When one of the components of this sound falls outside this 
bandwidth, it can be individually distinguished. We refer to this bandwidth as the 
critical bandwidth. We can define a mapping of acoustic frequency, f, to a “per-
ceptual” frequency scale, as follows: 
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Another similar and more common in speech recognition is the mel scale gener-
ated by: 
 mel frequency = 2595 log10(1 + f / 700,0)    (4) 
The critical bandwidth for Bark and mel scales are calculated using the following 
function: 
 BWcritical = 25 + 75 [1 + 1.4 ( f / 1000)2] 0.69    (5) 
Both the Bark scale and the mel scale can be regarded as a transformation of the 
frequency scale into a perceptually meaningful scale that is linear. The combina-
tion of these two theories gave rise to an analysis technique known as the critical 
band filter bank. A critical band filter bank is simply a bank of linear phase FIR 
bandpass filters that are arranged linearly along the Bark (or mel) scale. The 
bandwidths are chosen to be equal to a critical bandwidth for the corresponding 
center frequency. 
The output of this analysis is a vector of power values (or power/frequency pairs) 
for each frame of data. These are usually combined with other parameters, such 
as total power, to form the signal measurement vector. 
2.2.2  Fourier Transform Filter Bank 
We have previously discussed the advantages in using non-uniformly spaced fre-
quency samples. One of the easiest and most efficient ways to compute a non-
uniformly spaced filter bank model of the signal is to simply perform a Fourier 
transform on the signal, and sample the transform output at the desired frequen-
cies. The Discrete Fourier Transform (DFT) of a signal is defined as: 
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where f denotes the frequency in Hz, fs denotes the signal sampling frequency 
and Ns denotes the window duration in samples. 
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In order to discover the power magnitude of each of filter banks, we have to 
sample the spectrum at the frequencies given by Bark transformation. But since 
usually the spectrum is over sampled the magnitude is an average of specific 
elements of the spectrum falling in that bank. The calculation of the power mag-
nitude is done using the following function. 
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In noisy environments, noise often disproportionately degrades our estimates of 
the low amplitude areas of the spectrum. Stated another way, we are more confi-
dent of the reliability (and repeatability) of our estimates of the high amplitude 
areas of the spectrum. For this reason, we often impose a limit on the dynamic 
range of the spectrum. This is depicted in Fig. 3. We refer to this lower limit as 
the dynamic range threshold. 

 

Figure 3: Dynamic range threshold 

Recall that since the spectrum of the speech signal inherently drops per decade, a 
threshold based on low frequency energies, where the peak to valley spectral 
amplitude difference is large, can easily remove useful signal energy at higher 
frequencies. Later, we will discuss more sophisticated methods for implementing 
threshold of the spectrum based on parametric modeling techniques. 
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2.2.3  Cepstral Coefficients 
The composite speech spectrum, as measured by a Fourier transform, consists of 
the excitation signal filtered by a time-varying linear filter representing the vocal 
tract shape. The process of separating the two components, often referred to as 
deconvolution. The frequency domain representation of this process is: 
 S( f ) = G( f ) V( f )       (8) 
where G( f ) represents the spectrum of the excitation signal and V( f ) the spec-
trum of the vocal tract filter. 
If we take the logarithm from the previous equation, we have: 
Log( S( f ) ) = Log( G( f ) ) + Log( V( f ) ) 
Hence in logarithm domain the excitation and the vocal tract shape are superim-
posed, so it is easy to separate them. 
The cepstrum is defined signal derived from the log spectral magnitudes. This 
yealds: 
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We refer to this coefficients as cepstral coefficients computed via Fourier Trans-
formation. 
The low order terms of the cepstrum correspond to short-term correlation in the 
speech signal (smooth spectral shape or vocal tract shape). The local maxima in 
the higher order terms demonstrate long term correlation, or periodicity, in the 
waveform (excitation information). The cepstrum of an unvoiced signal does not 
show any periodicity. In spectral analysis for speech recognition applications, 
normally only the low order terms (n < 20) are used. 

2.3  Linear Prediction Coefficients 
We now turn from Fourier Transform methods based on linear spectral analysis 
to a class of parametric modeling techniques that attempt to optimally model the 
spectrum as an autoregressive process. In this section, we will discuss computa-
tion of a parametric model based on least mean squared error theory. This tech-
nique is known as linear prediction (LP). 
Given a signal, s(n), we seek to model the signal as a linear combination of its 
previous samples. Let us define our signal model as:  

 ∑
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where NLP represents the number of coefficients in the model (the order of the 
predictor), {aLP} are defined as the linear prediction coefficients (predictor coef-
ficients), and e(n) represents the error in the model (the difference between the 
predicted value and the actual measured value). The error term should tell us 
something about the quality of our model. It is also possible to show that a linear 
prediction model effectively models the spectrum of the signal as a smooth spec-
trum.  
Under the constraint that we would like the mean-squared error to be as small as 
possible (seeking a solution that gives us the minimum error energy is reason-
able), the coefficients (excluding aLP(0) ) of Eq. (10) can be obtained from the 
following matrix equation: 
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This solution is known as Autocorrelation Method. The last function can be also 
written as a autocorrelation function 
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which used in the Levinson-Durbin [1] recursion can produce LP coefficients. 
Also by slight modification of Eq. 12 we can achieve a dynamic range threshold. 
2.3.1  LP Derived filter bank amplitudes and cepstral coefficients 
Using the LP model as a background we can derive the filter bank amplitudes 
and cepstral coefficients using the LP spectrum.  
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3. Conclusion 
We have presented several popular signal analysis techniques used in speech 
recognition systems in a common framework. As it can be seen from the pre-
sented above the next step will be to process this raw vectors of information into 
more useful vectors and then to statistically analyze them and build a base point 
for building a speech recognition system.  
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