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Abstract—Hands-on exercises are an important aspect of
students’ education and they have a positive effect on their
overall knowledge retention rates. With the Covid-19 pandemic
on one hand, and the ever-increasing number of new students
on the other, in-person computer laboratories are no longer a
feasible option for the implementation of such practical lessons.
The introduction of remote learning laboratories is one potential
solution to both of these problems. However, existing remote
laboratory implementations only focus on either a single scientific
field, are not versatile in terms of supported infrastructure, or
support only limited runtime options for the software to be used
as part of the exercises. To overcome these issues, we have devised
a remote laboratory framework consisting of 8 fundamental
feature requirements which would allow flexible use in different
fields of study, while at the same time enabling easy extension
with existing and new simulation software. We discuss different
implementation routes and report on the progress that we have
already made in terms of setting up such a remote laboratory
for the needs of our courses. We conclude that while most
features can be implemented with existing open source software,
challenges arise in terms of providing a self-service portal from
which students can on-demand deploy resources.

Index Terms—remote learning, remote laboratory, infrastruc-
ture orchestration, virtualization, containerization

I. INTRODUCTION

Hands-on experience is one of the pillars of natural sciences
education, including computer science. The introduction of
real-world practical examples in the curricula directly impacts
the students’ knowledge retention rates and has an overall
positive impact on the education process as a whole [1]. How-
ever, in the majority of cases the design and organization of
traditional hands-on exercises is a burdensome process for all
parties involved, both for the educators and the students alike,
no matter whether they are executed remotely or in-person.
On one hand the required resources need to be provisioned
and configured, while on the other hand it cannot be assumed
that all students have the necessary equipment at their personal
disposal for successfully taking part in the devised scenarios
at home. An obvious solution to the latter problem would be
to simply make available on-premise equipment which would
be provided for in-person students’ use, but even this might
prove challenging. In light of recent events, strict lockdowns
during the Covid-19 pandemic largely prevented the use of
institutional computer science laboratories. Furthermore, the
number of natural sciences students increases every year [2]
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and universities might have logistical difficulties scaling the
available resources to students’ demand.

One potential solution which would allow to overcome these
problems is the introduction of remotely accessible labora-
tories where the necessary computing infrastructure can be
provisioned, configured, and made available to students either
by the system administration department of the university or
by the course educators themselves. By leveraging either the
private cloud infrastructure of the institution or by utilizing
public cloud solutions, students can be provided with effortless
remote access capabilities, while at the same time not requiring
any high-performance infrastructure locally [3]. In such a
scenario, the exercise setup would be completed beforehand,
without the need for additional effort by the students, thus
allowing them to focus on solving the challenges themselves
instead of spending time on environment setup.

Should these remote laboratories be implemented in a
scalable and easy to maintain manner, their advantages would
be many-fold. Firstly, they would facilitate easy collaboration
between students who all have access to the same centralized
resources on a scale which is simply not feasible when each
student completes the exercises on their own local machine
or on-premise with a subset of the group. Furthermore, by
following security best practices in terms of isolating the re-
mote laboratory from the rest of the production systems, even
potentially disruptive exercises can be organized, such as the
showcasing of vulnerable software components or practicing
with malicious exploits, concepts important for cybersecurity
related courses [4]. Finally, by maintaining a pool of historical
exercises, students can on-demand, and in their own time, use
the infrastructure to revise important concepts in which they
might be interested in.

The aim of this paper is to provide a framework for the
implementation of a general purpose, infrastructure agnostic,
versatile remotely accessible laboratory that can be utilized as
part of various university courses requiring hands-on exercises,
while not being strictly limited to the area of computer science.
The main contributions of this work are:

• Presentation and discussion regarding the state of the
art research in terms of implementing remote access
laboratories in an education context.

• Definition of a framework for future remote access labo-
ratories, not limited to a particular scientific field.

• Discussion of potential routes in which remote learning
laboratories conformant to the framework can be imple-



mented.
• Reporting on real-world experience acquired during ef-

forts to implement such a remote learning laboratory in
a number of computer science related courses.

The rest of this paper is organized as follows: in Section
II we discuss related work to the area of remotely accessible
laboratories for education purposes, before moving forward
with Section III where we outline the set of requirements
that we have devised for the implementation of such a remote
laboratory. In Section IV we discuss concrete ways in which
the requirements outlined in Section III can be met, while
also describing various approaches which we have already
used during a number of courses at our faculty. We conclude
the paper with Section V where we summarize the presented
framework and discuss future planned work.

II. RELATED WORK

The need for remotely accessible laboratories that can
augment the education process while allowing students to
freely experiment and improve their understanding of novel
concepts has already been recognized. Efforts have been made
to improve the usability of such laboratories by both academia
and industry. In the text that follows we outline the state of
the art research related to this topic.

Remote learning laboratories have been traditionally very
popular in a computer networking context, providing an easy
and cost-effective way of gaining hands-on experience with en-
terprise level devices. Using different forms of virtualization,
coupled with advancements in software defined networking
(SDN), network devices such as routers or switches can be run
on general purpose hardware, eliminating the need for students
to buy expensive equipment, thus allowing them to easily
acquire much needed experience using the latest revisions of
both the software and hardware [5]. Unfortunately the network
simulators that make all of this possible usually have very high
system requirements in order to be able to virtualize these
complex devices and are difficult to set up for inexperienced
users taking their first steps in these fields. To alleviate these
problems, centralized infrastructures where users can deploy
a number of virtualized network devices for training purposes
in an ad-hoc manner have been developed. Álvarez et al. [6]
present one such implementation of a remote laboratory based
on QEMU/KVM virtual machines that users can leverage as an
alternative to commercial network training platforms offered
by major vendors. Continuing this trend, Scazzariello et al. [7]
describe a more modern architecture for deploying virtualized
network devices, utilizing a container orchestrator to manage
the containerized network devices and ensure the long term
scalability of the platform. By developing a custom container
network interface (CNI) plugin [8], [9], the authors have
managed to adapt the current limitations of the Kubernetes
orchestrator of assigning multiple independent interfaces per
containers, thus enabling this new use-case.

Another area of particular interest where remote laboratories
can be utilized is in the context of cybersecurity exercises.
Cybersecurity courses are faced with the challenge of finding

a solution to the ever-present problem of how to securely
offer vulnerable environments where students can get hands on
experience regarding topics that they have only theoretically
learned during the curriculum. Sianipar describes Tele-Lab
[10] which leverages virtual machines, and in certain cases
containers, to offer vulnerable virtual environments which can
then be customized using shell scripts after their deployment.

It should be noted that general purpose remote laboratories
not targeted at a particular subject matter have been described
in literature as well [11]–[15]. Unfortunately, the majority of
them focus exclusively on a given runtime technology such
as virtual machines [14], [15] or containers [11], [12], thus
limiting the number of possible scenarios and impacting the
reusability of already created content by forcing reimplemen-
tation in the supported runtime environment.

Apart from academia, industry has also identified the bene-
fits of remote laboratories, with many cloud providers offering
virtual training for their own products in a sandbox environ-
ment [16], [17]. Even though most of these courses are free
and accessible to the wider audience, they focus exclusively
on the technology of the given cloud provider. Taking into
account the low levels of compatibility between offerings of
different cloud vendors, vendor lock-in is a major challenge
in this area [18].

In conclusion, while there are existing efforts for imple-
menting remotely accessible laboratories for education, they
are focused on hosting only certain types of workloads relevant
to a particular subject matter, offer limited support for different
runtime environments, or can be deployed only on certain
types of infrastructure. In our opinion a development of a
general purpose remote laboratory framework is needed. Such
a framework should be infrastructure agnostic, highly scalable,
with support for different runtime environments allowing the
deployment of both new and existing workloads. A later
practical implementation of the framework would be beneficial
not only for computer science education, but also for other
scientific disciplines.

III. REQUIREMENTS EVALUATION FOR A REMOTE
LEARNING LABORATORY

The design of a multipurpose remotely accessible laboratory
for education demands careful consideration and evaluation
of requirements. Different use-case scenarios might require
distinct, often conflicting features. Careful balance must be
stricken in terms of supported scenarios, environment isola-
tion, and ease-of-use both in terms of administration and regu-
lar usage. On one hand, use-cases such as remote development
in various programming languages require a large catalog,
supporting different tools and programming languages. On
the other hand, strong security measures combined with strict
network isolation are essential for scenarios related to cyber-
security, guaranteeing the integrity of the underlying platform
itself. Finally, various other fields already have a sizable
catalog of simulation software which can only run in certain
environments, for example on a given version of an operating
system, or only within containers. Effort should be made to



support different runtime environments as to facilitate easy
incorporation of existing software into the remote laboratory.

To tackle these challenges, in the remainder of this section
we outline 8 fundamental features (abbreviated as F1-F8) for
the implementation of a remote laboratory.

• F1: Infrastructure agnostic – The remote laboratory
should support deployment both in a virtualized environ-
ment, but also directly on bare-metal servers. Different
deployment options should be interoperable with each
other, allowing the virtual laboratory to be hosted both
on physical and virtual servers at the same time. This
would ensure both the performance and elasticity of the
underlying platform. In times of high resource demand,
virtualized resources either from on-premise institutional
private clouds or public clouds can augment the per-
manent hardware resources where the platform itself is
hosted.

• F2: Support for different runtime environments – Effort
should be made to support both containers and virtual
machines as runtime environments for the deployed sce-
narios and software on top of the platform. This would
ensure greater compatibility with existing software that
can currently be deployed in a standalone fashion either
as containers or inside virtual machines, while saving
time which would otherwise be dedicated to conversion.
The support for different runtime environments would
also future proof the platform, enabling novel technolo-
gies such as serverless functions to be utilized, should
the need arise.

• F3: Free from vendor lock-in – Even though both vir-
tualization and containerization are general concepts,
unfortunately in practice their various implementations
are not compatible with each other. This problem is
even more pronounced when it comes to hypervisors,
with different virtual hard disk formats and guest drivers
required for interacting with the host operating system. In
terms of containerization, the Open Container Initiative
(OCI) [19] aims to create industry standards around
container formats and runtimes, allowing container image
reuse among different containerization solutions. Never-
theless, the definition of an abstraction layer which will
support various virtual machine templates regardless of
the hypervisor where they were created is paramount to
enable easy migration of existing software solutions to
the remote laboratory.

• F4: Integration with existing external systems – The re-
mote laboratory cannot be seen as an isolated silo in terms
of the existing and well-proven e-learning systems in use
today. The majority of universities have already deployed
learning management systems (LMS) for keeping track of
students’ records and for distributing learning materials.
Any platform which would enable the implementation
of a remote laboratory needs to support integration with
such existing systems, aiding both the registration process
of the new users, as well as syncing course participation

information necessary for filtering the available scenarios.
Furthermore, such an integration should be versatile as to
allow both manual and automatic data exchange between
the systems which can later also be analyzed to determine
students’ performance [14].

• F5: End-to-end connectivity between the students and
the remote laboratory – Secure end-to-end connectivity
between the remote laboratory and the students’ comput-
ing devices would allow direct communication, no matter
the communication protocol that the target software uses.
Additionally, such an end-to-end connectivity, might also
enable the incorporation of local resources available to
the students within the context of an elaborate scenario,
a strategy already discussed in [10].

• F6: Efficient use of compute resources – The remote
laboratory should offer versatile options for supporting
an influx of students. During the implementation process,
scenarios where the requested computing capacity ex-
ceeds the available capacity should be taken into account.
This should not be seen as an unlikely occurrence, since
the number of students increases every year, and courses
with large number of students which would incorporate
the use of the remote laboratory within their curriculum
might outpace the rate at which new computing capacity
is made available. Multiplexing strategies need to be
implemented to deal with such scenarios.

• F7: Effortless collaboration between students – One of
the major benefits of a centralized remotely accessible
laboratory is that it enables easy collaboration between
students no matter their group size. To facilitate this,
despite supporting an isolated tenant model, where each
student is given an independent remote working environ-
ment, shared access to a centralized instance should be
possible as well.

• F8: Versatile interfacing options – To avoid requiring
any prerequisite knowledge, students and educators alike
should be able to choose the interface option most suited
to them, either a graphical user interface (GUI) or a
command line interface (CLI). The support of a CLI op-
tion would make bulk resource provisioning by educators
easier, together with requiring less effort for integration
with third party systems. On the other hand, a GUI would
be necessary from the students perspective, providing
easy way to browse the list of supported software and
scenarios.

In the section that follows we proceed by outlining guide-
lines for meeting the stated feature requirements defined in the
framework.

IV. DISCUSSION OF IMPLEMENTATION OPTIONS

The main pillar which would allow the development of a
remote laboratory that satisfies all of the previously outlined
features is the introduction of a layered design using multiple
abstractions. The implementation of such abstraction layers
would ensure the wide-ranging compatibility with different
virtualization and containerization platforms while providing a



Fig. 1. Visual Representation of the Implementation Options for the Reference
Framework

unified view towards the end-users. Fortunately, the advance-
ments made in terms of various configuration management,
orchestration, and provisioning tools allow easy integration
with diverse systems while relying on a single interface – that
exposed by the chosen tool.

Figure 1 provides a visual overview of the implementation
possibilities of the framework, outlining the relationship be-
tween the various feature requirements. In the remainder of
this section, we proceed with the discussion of implemen-
tation options for the relevant features, grouped in different
subsections.

A. Infrastructure and Runtime Versatility

The F1, F2, and F3 features can be satisfied with an
elaborate use of popular and open source provisioning, or-
chestration, and configuration management tools.

Provisioning tools such as Terraform [20] can be used to de-
ploy infrastructure such as virtual machines, firewalls, routing
rules, and containers across different environments, as long as
they expose a documented application programming interface
(API). With the help of the wider open source community,
such tools have implemented compatible modules for various
solutions [21], allowing effortless deployment using a unified
syntax no matter the underlying platform, thus solving both F1
and F3. With the promotion of the infrastructure as code (IaC)
concept [22], infrastructure configuration can be written once
and applied across different environments that are compatible
with a given simulation software, without the need for any
new tooling.

Once the infrastructure has been deployed using a provision-
ing tool it can be further customized with the help of configu-
ration management solutions, such as Puppet [24] or Ansible
[23]. In this manner, different lab scenarios can be described
exactly once using the chosen configuration management tool

and later shared between users with the aim of extending the
number of supported scenarios. Such an approach would allow
the creation of scenario catalogs based on IaC scripts written
in different configuration management languages. This strategy
of describing exercises using configuration management tools
has been successfully tested and integrated in practice by the
SecGen project [25], [26].

After provisioning and configuration of both the infrastruc-
ture and simulation software, the question of its management
arises. For this task, orchestration tools can be used which
aim to reconcile the actual state of the services with the
recorded desired state specified by the administrator. While
the use of container orchestrators for managing large fleets
of containers has been extensively studied and implemented
in practice even in remote learning laboratories [7], their
shortcoming is that they are focused solely on a single runtime
environment – containers. To satisfy F2, an orchestrator should
support both containers and virtual machines at the same time,
using the same interface. One possible solution to this problem
is the Kubevirt project [27] which modifies the Kubernetes
orchestrator to support QEMU/KVM based virtual machines
as well. In this manner the Kubernetes scheduler can be
used to schedule virtual machines across all cluster nodes,
together with containers using a single seamless API, thus
fully satisfying F2.

We have already evaluated the use of the SecGen tool
to generate randomized virtual machines in the context of
a network security course [28]. We have also employed the
combination of Terraform and Kubevirt in a more recent
instance of the course, deploying both containers and virtual
machines on a large scale, for every student taking part. We
can report that with the help of these tools it is possible to
implement a remote learning laboratory, but without any user-
facing interface, students are not able to deploy resources on-
demand, and instead the grunt of the work in terms of instance
deployment is left to the educators themselves. Options which
would allow direct end-user control are discussed in the
subsection Interaction with End-Users below.

B. Integration with Existing Systems

To satisfy the requirements set out by F4 and F5 any remote
learning laboratory will need to support integration and data
exchange with existing systems which are already in use.
Unfortunately, in practice, this might be a challenging task,
since any third-party component would need to have a well-
defined API through which communication can be established.
Furthermore, in certain cases different people might be respon-
sible for the maintenance of the remote laboratory on one
hand, and the maintenance of the third party systems such as
the LMS on another, a fact that would further complicate the
testing and enablement of such integrations.

Perhaps the most important and common integration that
will be required is that with an existing LMS. Fortunately,
many popular learning management systems today expose an
API which can be consumed for harvesting relevant student
data for the remote laboratory, such as basic information,



enrolled courses, and student performance [29]. In cases where
such an API is not available, administrators will need to resort
to programmatically executing web requests which would
achieve the desired functions by simulating a real client. In
our case, we have successfully used both options before; we
have utilized the Moodle web service functionality as well
as created Python wrappers for programmatically simulating
requests, which allowed us to perform actions which are not
natively supported by the web service implementation yet. It
should be noted though that any large scale implementation
of a remote learning laboratory will have to extend this inte-
gration towards the end-users, so that they can independently
deploy resources directly from the user interface of their
choice.

To facilitate remote connectivity to the environment, users
will need to resort to the use of virtual private networks
(VPNs). As was the case with the LMS, integration with
existing systems will be required as well, since many in-
stitutions already have VPN concentrators in place both for
staff and students. The only requirement is that granular
firewall rules can be configured, targeted at each users of
the remote laboratory individually. This would ensure network
level isolation between the rest of the infrastructure and the
users of the remote laboratory, as well as among the users
themselves, ensuring that they can only access resources
which have been personally deployed. In cases where the
infrastructure is being set up from scratch, many popular open
source solutions exist that can act as both a firewall and a VPN
concentrator, such as PfSense, OPNSense, or VyOS. Care must
be taken to first evaluate the quality of any API before making
a selection. In our current remote learning environment we are
using OPNSense, but since not all required features have been
exposed via the API yet, additional tooling had to be created
which programmatically executed web requests, simulating a
client browser.

C. Interaction with End-Users

The last three feature requirements, F6, F7, and F8 all deal
with the way that end-users interact with the remote learning
laboratory. A common issue being faced is that the number
of students attending a given course drastically varies per
year, and as such it might not always be feasible to provision
additional hardware resources to meet the new requirements in
time. This problem can be solved by introducing some sort of a
sharing concept in terms of the compute infrastructure. Perhaps
the least intrusive solution for the lack of resources would be
to implement a time sharing mechanism, where students can
schedule when they would like to use the remote learning
laboratory. This would limit the number of users at any single
point in time, allowing the infrastructure to meet the demand
of users.

Certain scenarios and exercises require team work and the
remote learning laboratory together with the implemented
security and isolation features should be flexible enough to
support this. This can easily be solved with the introduc-
tion of the workspaces concept, where each user is given

their own dedicated workspace, but should the need arise
these workspaces can be shared between multiple users either
perpetually or for a limited time. In this manner, resources
deployed by a single student in a given resource would be
accessible by all other teammates.

The last, and perhaps the most challenging feature to
implement is a user facing application that would allow
students to access, configure, and deploy resources within
the virtual environment by themselves. Such an application
should incorporate support for all of the features described
previously, such as: allow users to deploy workloads from the
catalog depending on the courses that they are enrolled in;
allow users to schedule a desired timeslot for using the remote
learning laboratory; dynamically generate firewall rules to
reflect different sharing states of the workspaces; facilitate easy
addition of new exercises by educators and administrators;
interface with the different orchestration, configuration, and
provisioning tools to support the on-demand deployment of
applications within the catalog. To the best of our knowledge,
no such tool exists that can satisfy all of these requirements
by itself at present. However, the use of Kubevirt as a
Kubernetes extension that allows the Kubernetes API to be
used to manage virtual machines along with containers would
allow the repurposing of Kubernetes focused applications that
allow users to select and deploy workloads. Examples include
NMaaS [30], OpenShift [31], and KubeApps [32]. However,
it should be noted that none of these satisfy all of the features
in their current state, so they can only serve as a starting point
from where additional modifications will need to be made to
their source code.

To solve this final piece of the puzzle, we plan to evaluate
the various existing open source solutions and determine
whether they can be modified to support all 8 feature require-
ments or whether a new platform will have to be created from
scratch.

V. CONCLUSION

We have presented a framework consisting of 8 distinct
feature requirements for the implementation of a universal
and versatile remote learning laboratory, supporting both new
and existing simulation software. Through the discussion of
possible implementation routes, we conclude that the major-
ity of the requirements can be satisfied using open source
software, thanks to the recent advancements made in terms
of the robustness of configuration management, orchestration,
and provisioning tools. We have also reported on our current
progress in terms of implementing a conformant remote learn-
ing laboratory for use at our faculty during various courses.
Even though this remote laboratory, in its current state, is still
work in progress, students have already expressed satisfaction
and they prefer assignments which make use of the centralized
infrastructure instead of those that must be completed locally.
This is understandable, since by making use of the remote
laboratory students do not need to configure anything, and
can instead focus directly on the task at hand, foregoing
any manual setup procedures for the used software. However,



attention should be paid to the level of abstraction introduced
when deploying software to be used during the exercises, since
too much abstraction would have a negative impact in terms
of the students’ understanding of the underlying architecture
of the used simulation tools. This is especially true for
computer science subjects, where manually dealing with the
complete installation process can prove beneficial and can be
used to teach valuable troubleshooting lessons. Nevertheless,
using the presented framework a balanced approach can be
implemented, where students are tasked with installing the
software manually within their assigned virtual workspaces.

One open issue remains before the conceptual framework
can be realized in its entirety. To support the desired level
of versatility in terms of runtime environments, supporting
both virtual machines and containers, either some of the
existing open source platforms will have to be adapted or
a new one built from scratch. No matter the route taken,
the resulting platform will have to support direct access by
students, allowing them to on-demand deploy exercises while
providing integration with external systems for acquiring infor-
mation regarding course enrolment, grades, and dynamically
provisioning firewall rules for isolation. We plan to evaluate
how the existing open source candidates can be adapted to
meet the requirements in a future work, and if the required
effort is proven to be infeasible, implement such a platform
from scratch, thus concluding all of the 8 outlined features in
the presented framework.
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