
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

COMPARISON OF RECTANGULAR MATRIX MULTIPLICATION WITH AND
WITHOUT BORDER CONDITIONS

Petre Lameski Igor Mishkovski Sonja Filiposka Dimitar Trajanov Leonid Djinevski
Ss. Cyril and Methodius University in Skopje / FINKI FON University

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Matrix multiplication algorithms are very common and
widely used for computation in almost any field. There are
many implementations for matrix multiplication on different
platforms and programming models. GPU devices in the
recent years have become powerful computational units that
have entered the segment of high performance computing. In
this paper we are analysing two approaches for the matrix
multiplication algorithm with and without border conditions
for parallel GPU execution.

I. INTRODUCTION

Matrix multiplication is an operation that is widely used in
different algorithms. For that reason the speed up and
optimization of this operation may improve their
performance. As a mathematical operation, matrix
multiplication has been given a significant attention from the
computer science community. The regular complexity of the
“school” method for sqyare matrix multiplication is O(n3).
Several other methods for matrix multiplication exist that
reduce this complexity. These are the Strassen algorithm with
complexity of O(n2.807), the Coppersmith–Winograd
algorithm with complexity of O(n2.376) [1] and Williams
algorithm O(n2.373) [2]. For rectangular matrix
multiplication (n x m and p x n] the complexity is O(nmp) The
reduction in algorithm complexity introduce the speedup in
matrix multiplication that increases overall performance for
algorithms where matrix multiplication is used in significant
portion of the operations.

Given the architecture of the computers used, there are
existing attempts to speed up matrix multiplication using the
specific computer architecture design [3]. The architecture
specific characteristics of the computer are used to increase
performance such as instruction level parallelism, tiling,
avoiding cache conflicts, pre-fetching etc.
The optimizations of algebra operations has been addressed
by the community and wide variety of libraries exist that try
to optimize mathematical operations. Hardware vendors
usually provide libraries for their specific architectures that
use the architecture specific characteristics to improve
performance on some operations. Such libraries are MKL and
ACML. All of these libraries have the standard BLAS (Basic
Linear Algebra Sub-programs) libraries [4] which
performance greatly depends on the underlying architecture
[5].

With the introduction of the parallel programming, especially
with the introduction of GPU devices, there have been
significant improvements of a wide variety of algorithms and
processes that can use the benefits of parallelism. The main

problem with the introduction of the parallel execution is that
not all algorithms can be efficiently parallelized. The standard
library that is introduced by NVIDIA, for all of their GPU
architectures is CUBLAS that includes the matrix
multiplication. CUBLAS optimizes the performance of matrix
multiplication, however it is not very well documented what
characteristics of the hardware are used for the introduced
speedup. There have been attempts that successfully
outperform CUBLAS by means of increasing the efficiency
of the algorithm based on the specifics of certain architectures
[6].

One of the things that can be seen in literature is that all
optimizations of the algorithm for matrix multiplication is
based on the underlying hardware architecture since it is
always a good idea to use the benefits that the architectures
have to offer in order to improve the performance.

In this paper we compare two approaches for the standard
Matrix Multiplication Algorithm on custom sized rectangular
matrices on GPU devices. The approaches differ in the size of
memory transfer between the global memory and the device
shared memory, and in the number of operations that are used
in the matrix kernel calculation. The main motivation for this
work is the comparison of the performance between memory
transfer between shared and global memory and the branching
inside the kernel function for matrix multiplication.

This paper is organized as follows: Section 2 present a short
overview of General-Purpose computing on GPU devices
(GPGPU). The matrix multiplication algorithms are defined
in Section 3. The testing methodologies used are described in
Section 4, followed by the obtained results in Section 5. We
conclude this paper in Section 6.

II. GPU DEVICES

Today GPU devices are the most powerful computational
processors for the cost at which are being sold [7]. The latest
Kepler [8] architecture provides almost 3TFLOPS in the
hands of a workstation PC, thus providing tremendous
computational resources for the average user. Either the fact
that GPUs were traditionally developed for graphics
applications, with the help of enthusiasts, a significant
research was performed for utilizing the computational
resources for GPGPU (General-Purpose applications on GPU
devices) [9]. Nvidia as one of the leading vendor for GPU
processors, in 2007 released parallel computing platform and
programming model for execution general-purpose
applications, called CUDA (Compute Unified Device
Architecture) [10]. Additionally, OpenCL was released as a

The 10th Conference for Informatics and Information Technology (CIIT 2013)

standard programming language, formed by the major
vendors like Apple, Nvidia, AMD/ATI, Intel, and other

companies in the industry [11]. OpenCL is very similar to
CUDA, however it agnostic to any platform, and

vendor independent, unlike CUDA which is bounded to
Nvidia. OpenCL is based on ANSI-C99 extended with
additional data types, qualifiers and build-in functions. Beside
C/C++, CUDA on the other hand is available to more
programming styles like fortran, java, phyton, perl, MATLAB
and others, by adopting a wrapper of the native CUDA C/C++
compiler.

As one of the latest GPU devices from Nvidia, which has the
latest Kepler architecture at the moment of writing this paper
is the GTX 680 model. On Fig. 1 we present the memory
organization of the GTX 680, which consists of 3 levels: L1
cache memory (configurable by the developer 16/32/48 KB),
L2 cache memory that is of fix size of 512KB and the Global
memory of 2GB.

III. MATRIX MATRIX MULTIPLICATION ALGORITHM

The regular matrix multiplication is done by multiplying each
row of a matrix A with each column of a matrix B. Each
element in the matrix C can be defined as:

(1)

In parallel multiplication of matrices on GPU, each result Ci,j
is calculated by a separate thread. Threads access the global
memory, but threads in same block, access the very fast
shared memory inside the GPU. The shared memory in the
system used in this paper is consisted of blocks with size
32x32. The matrix is divided in these blocks and the
calculation is done. The problem arises when the sizes of the
matrix are not divisible by the block size. In this case the sum
in (1) cannot be calculated in the same way since not all the
memory entries in the block have a valid value. Another

problem is that the allocated shared memory is also included
in the calculation sum.

Figure 2. Shared memory blocks and Actual matrix borders

Inside the kernel function each block has two block IDs bx
and by and each thread has also two IDs, tx and ty. Lets define
the block to be the size of B. The data from the global
memory is copied in the shared memory for higher
performance of the calculation. Each cell of the matrix is
copied in the shared memory such that i=B*bx+tx and
j=B*by+ty. The border cases are when the values B*bx+tx or
B*by+ty cross the values of the widths and heights of A and
B. The difference between the allocated shared memory
blocks and actual matrix sizes is given in Figure 2.

When the sizes of A and B are not divisible with B, the border
blocks and threads do the calculation anyway and if they are
not ignored explicitly. Because the memory content is not
known the results of this calculation will be wrong. The
border cases are a problem when calculating the product of
two rectangular matrices with arbitrary dimensions using
CUDA.

Figure 1. GPU memory organization

The 10th Conference for Informatics and Information Technology (CIIT 2013)

To solve the problem with the border cases in rectangular
matrix multiplication we have two choices. The first choice is
to copy only the data within the border of the matrices and
deal with the border cases inside the kernel function. In this
way we save on the memory transfer bandwidth that is used
between the system memory and the device memory. The
second choice is to increase the width and height of the
matrices so that their dimensions are divisible with the used
block size. The fields of the matrices that don’t actually
belong to them are initialized with zero values so that they
don’t interfere with the multiplication process. By increasing
the dimensions of the matrices, the border conditions no
longer exist and the kernel doesn’t have the need of logical
branching in the code.

The first approach is defined in Listing 1 as follows:

Listing 1:
Allocate Matrices A (n x m) and B (p x n);
If (m mod BLOCK_SIZE) !=0
 Set new_m to next multiple of BLOCK_SIZE >m;
If (n mod BLOCK_SIZE) !=0
 Set new_n to next multiple of BLOCK_SIZE >n;
If (p mod BLOCK_SIZE) !=0
 Set new_p to next multiple of BLOCK_SIZE >p;
Allocate Matrices NewA and NewB to new_n x new_m and
new_p x new_n;
Initialize all fields of NewA and NewB to 0;
For i in [0:new_n] and j in [0:new_m]
Set NewA(i,j) = A(i,j) if i<n and j<m;
For i in [0:new_p] and j in [0:new_m]
Set NewB(i,j) = B(i,j) if i<n and j<m;
Do normal kernel multiplication of NewA and NewB on GPU
such that NewC=NewA*NewB;
Get subMatrix C with dimensions m x p from NewC starting
at (0,0);
Return C;

The first approach moves bigger matrices in kernel memory
and does the calculation with them. The result will be the
same since all the fields from the bigger matrices NewA and
NewB that are not common with A and B are set to 0. In this
way we get the same result as we would get if using formula
(1) to multiply the matrices.

The second algorithm on the other hand uses only the
initialized matrices A and B with their respectful sizes n x m
and p x n. The border cases are resolved inside the kernel.
Whenever the kernel multiplication reaches a border block
that is not fully covered with values from the matrices, the
shared memory for that block is set to 0. In this way we
introduce code branching inside the kernel function. However
since there are more threads inside the calculating blocks than
needed, we also need to do additional check if the resulting
matrix C is also inside the defined borders. The second
algorithm can be defined as:

Algorithm 2:
Allocate Matrices A and B with dimension n x m and p x n;

Do modified kernel multiplication of A and B on GPU such
that C=A*B;
 Return C;

Modified kernel multiplication:
Set bx=BlockID.x,
by=BlockID.y,
tx=ThreadID.x,
 ty=ThreadID.y;
S=0;
Declare SharedA and SharedB as shared memory matrices;
Do for all fields:
 if (bx and by are a border case)
 if(bx*BLOCK_SIZE+tx>weightA && by*BLOCK_SIZE >
heightA)
 SharedA[tx,ty]=0;
 Else
 Load corresponding A element to SharedA
 if(bx*BLOCK_SIZE+tx>weightB && by*BLOCK_SIZE >
heightB)
SharedB[tx,ty]=0;
 Else
 Set SharedB[tx,ty] to the corresponding B element
 Synchronize threads;
 Do the multiplication for the sub matrix;
 Synchronize threads;
 If(Current thread has legal result)//is within the borders
 Write block sub matrix to device memory (C);
 Return C;

IV. TESTING METHODOLOGIES

All tests were performed on the hardware infrastructure
presented in Table 1. The Ubuntu 12.04 LTS was installed as
an operating system, while the implementation was compiled
with the Nvidia nvcc compiler that is part of the CUDA 5.0
toolkit.

Table 1:
Utilized hardware for performing all of the tests
CPU Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
RAM Kingston 32GB @ 1.60GHz
GPU NVIDIA GeForce GTX 680

Both approaches were compared by measuring the speed
performance of the CUDA matrix multiplication kernels for
different sizes of the matrices. Since we are dealing with
multiplication of two matrices, the width wA of the matrix A
and the height hB of the matrix B should have the same value,
therefore, in our experiments we are varying the height hA of
matrix A and width wB of matrix B. For wA = hB we have
chosen cases 32 and 64 in order to analyse both approaches.

The 10th Conference for Informatics and Information Technology (CIIT 2013)

V. RESULTS

This section presents the results obtained from both of the
matrix multiplication approaches for two cases. For the first
case of wA = hB = 32, we analyze both of the approaches.
Fig. 3 presents the speed of the second approach with
conditional branching, which is normalized over the speed of
the first approach without conditional branching.
Additionally, in Fig. 3 we present the speed of first approach
which is also normalized, thus is always equal to 1. Higher is
better, therefore, every value of the second approach below 1
confirms that introducing few more memory transfers

provides increased performance than having conditional
branching in the kernel code.

The second experiment that we performed for the second case
of wA = hB = 64 is presented in Fig. 4. Similar as for the first
experiment, the results provide an additional confirmation
that more memory transfers provides increased performance
than having conditional branching in the kernel code.
The average improvement of performance is 10.24% for the
case of wA = hB = 64 and 15.51% improvement in the case
of wA = hB = 32.
It is interesting to state that for both cases the results present
performance increases for some data requirements.

Figure 3 Normalized speed for both approaches for the case wA = hB = 32

Figure 4 Normalized speed for both approaches for the case wA = hB = 64

0

1

2

3

4

5

N
o

rm
a

li
ze

d
 p

e
r

[W
it

h
o

u
t

IF
]

[m,n] pairs

With IF Without IF

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

N
o

rm
a

li
ze

d
 p

e
r

[W
it

h
o

u
t

IF
]

[m,n] pairs

With IF Without IF

The 10th Conference for Informatics and Information Technology (CIIT 2013)

VI. CONCLUSION

In this paper we present an analysis the for parallel matrix
multiplication algorithm on GPU devices. Two approaches
were implemented and a performance comparison between
them was performed. The results show that for both cases the
approach with few more memory transfers outperforms the
approach with the conditional branching. Additionally, the
performance increased noticed for some data requirements is
a subject for future work, as well as analysing other matrix
multiplication algorithms for GPU devices.

REFERENCES

[1] Don Coppersmith and Shmuel Winograd. Matrix Multiplication via
Arithmetic Progressions. J. Symbolic Computation, 9(3):251–280,
1990, doi:10.1016/S0747-7171(08)80013-2.

[2] Virginia Vassilevska Williams, Breaking the Coppersmith-Winograd
barrier, UC Barkeley and Stanford University
unicyb.kiev.ua/~vingar/progr/201112/1semestr/matrixmult.pdf
(unpublished manuscript).

[3] Nadav Eiron, Michael Ro deh, Iris SteinwartsMatrix Multiplication: A
Case Study of Algorithm Engineering Proceedings WAE98 Saarbruken
Germany August 20 22 1997 Ed: Kurt Mehlhorn pp.98-109.

[4] E. Anderson et al. LAPACK: A portable linear algebra library for high-
performance computers. Technical Report 20, LAPACK Working Note,
May 1990.

[5] K. Goto and R. A. v. d. Geijn. Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw, 34:12:1–12:25, May 2008.

[6] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang
Bao, and Ninghui Sun. Fast implementation of dgemm on fermi gpu. In
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 35:1–
35:11, New York, NY, USA, 2011. ACM.

[7] D. Kirk, W. Wen-mei, and W. Hwu, “Programming massively parallel
processors: a hands-on approach,” USA, 2010.

[8] NVIDIA, “Next generation cuda compute architecture: Kepler gk110,”
2012.

[9] Harris, M.J., “General Purpose Computation on GPUs”, retrieved
February 2013 from http://www.gpgpu.org/.

[10] NVIDIA CUDA, retrieved February 2013 from
http://developer.nvidia.com/object/cuda.html/.

[11] The OpenCL Specification, Version 1.1, document Revision 43, 2009,
retrieved February 2013 from http://www.khronos.org/opencl/.

