
The 10th Conference for Informatics and Information Technology (CIIT 2013) 

©2013 Faculty of Computer Science and Engineering 

COMPARISON OF RECTANGULAR MATRIX MULTIPLICATION WITH AND 
WITHOUT BORDER CONDITIONS 

Petre Lameski Igor Mishkovski Sonja Filiposka Dimitar Trajanov Leonid Djinevski 
Ss. Cyril and Methodius University in Skopje / FINKI FON University 

Skopje, Macedonia Skopje, Macedonia 
 
 

ABSTRACT 

Matrix multiplication algorithms are very common and 
widely used for computation in almost any field. There are 
many implementations for matrix multiplication on different 
platforms and programming models. GPU devices in the 
recent years have become powerful computational units that 
have entered the segment of high performance computing. In 
this paper we are analysing two approaches for the matrix 
multiplication algorithm with and without border conditions 
for parallel GPU execution. 

I. INTRODUCTION 

Matrix multiplication is an operation that is widely used in 
different algorithms. For that reason the speed up and 
optimization of this operation may improve their 
performance. As a mathematical operation, matrix 
multiplication has been given a significant attention from the 
computer science community. The regular complexity of the 
“school” method for sqyare matrix multiplication is O(n3). 
Several other methods for matrix multiplication exist that 
reduce this complexity. These are the Strassen algorithm with 
complexity of O(n2.807), the Coppersmith–Winograd 
algorithm with complexity of O(n2.376) [1] and Williams 
algorithm O(n2.373) [2]. For rectangular matrix 
multiplication (n x m and p x n] the complexity is O(nmp) The 
reduction in algorithm complexity introduce the speedup in 
matrix multiplication that increases overall performance for 
algorithms where matrix multiplication is used in significant 
portion of the operations. 
 

Given the architecture of the computers used, there are 
existing attempts to speed up matrix multiplication using the 
specific computer architecture design [3]. The architecture 
specific characteristics of the computer are used to increase 
performance such as instruction level parallelism, tiling, 
avoiding cache conflicts, pre-fetching etc. 
The optimizations of algebra operations has been addressed 
by the community and wide variety of libraries exist that try 
to optimize mathematical operations. Hardware vendors 
usually provide libraries for their specific architectures that 
use the architecture specific characteristics to improve 
performance on some operations. Such libraries are MKL and 
ACML. All of these libraries have the standard BLAS (Basic 
Linear Algebra Sub-programs) libraries [4] which 
performance greatly depends on the underlying architecture 
[5]. 
 

With the introduction of the parallel programming, especially 
with the introduction of GPU devices, there have been 
significant improvements of a wide variety of algorithms and 
processes that can use the benefits of parallelism. The main 

problem with the introduction of the parallel execution is that 
not all algorithms can be efficiently parallelized. The standard 
library that is introduced by NVIDIA, for all of their GPU 
architectures is CUBLAS that includes the matrix 
multiplication. CUBLAS optimizes the performance of matrix 
multiplication, however it is not very well documented what 
characteristics of the hardware are used for the introduced 
speedup. There have been attempts that successfully 
outperform CUBLAS by means of increasing the efficiency 
of the algorithm based on the specifics of certain architectures 
[6]. 
 

One of the things that can be seen in literature is that all 
optimizations of the algorithm for matrix multiplication is 
based on the underlying hardware architecture since it is 
always a good idea to use the benefits that the architectures 
have to offer in order to improve the performance. 
 
In this paper we compare two approaches for the standard 
Matrix Multiplication Algorithm on custom sized rectangular 
matrices on GPU devices. The approaches differ in the size of 
memory transfer between the global memory and the device 
shared memory, and in the number of operations that are used 
in the matrix kernel calculation. The main motivation for this 
work is the comparison of the performance between memory 
transfer between shared and global memory and the branching 
inside the kernel function for matrix multiplication.  
 
This paper is organized as follows: Section 2 present a short 
overview of General-Purpose computing on GPU devices 
(GPGPU). The matrix multiplication algorithms are defined 
in Section 3. The testing methodologies used are described in 
Section 4, followed by the obtained results in Section 5. We 
conclude this paper in Section 6. 

II. GPU DEVICES 

Today GPU devices are the most powerful computational 
processors for the cost at which are being sold [7]. The latest 
Kepler [8] architecture provides almost 3TFLOPS in the 
hands of a workstation PC, thus providing tremendous 
computational resources for the average user. Either the fact 
that GPUs were traditionally developed for graphics 
applications, with the help of enthusiasts, a significant 
research was performed for utilizing the computational 
resources for GPGPU (General-Purpose applications on GPU 
devices) [9]. Nvidia as one of the leading vendor for GPU 
processors, in 2007 released parallel computing platform and 
programming model for execution general-purpose 
applications, called CUDA (Compute Unified Device 
Architecture) [10]. Additionally, OpenCL was released as a 
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standard programming language, formed by the major 
vendors like Apple, Nvidia, AMD/ATI, Intel, and other  

companies in the industry [11]. OpenCL is very similar to 
CUDA, however it agnostic to any platform, and  

vendor independent, unlike CUDA which is bounded to 
Nvidia. OpenCL is based on ANSI-C99 extended with 
additional data types, qualifiers and build-in functions. Beside 
C/C++, CUDA on the other hand is available to more 
programming styles like fortran, java, phyton, perl, MATLAB 
and others, by adopting a wrapper of the native CUDA C/C++ 
compiler.  
 
As one of the latest GPU devices from Nvidia, which has the 
latest Kepler architecture at the moment of writing this paper 
is the GTX 680 model. On Fig. 1 we present the memory 
organization of the GTX 680, which consists of 3 levels: L1 
cache memory (configurable by the developer 16/32/48 KB), 
L2 cache memory that is of fix size of 512KB and the Global 
memory of 2GB. 
 

III. MATRIX MATRIX MULTIPLICATION ALGORITHM 

The regular matrix multiplication is done by multiplying each 
row of a matrix A with each column of a matrix B. Each 
element in the matrix C can be defined as: 
             

         
(1)                 

 
In parallel multiplication of matrices on GPU, each result Ci,j 
is calculated by a separate thread. Threads access the global 
memory, but threads in same block, access the very fast 
shared memory inside the GPU. The shared memory in the 
system used in this paper is consisted of blocks with size 
32x32. The matrix is divided in these blocks and the 
calculation is done. The problem arises when the sizes of the 
matrix are not divisible by the block size. In this case the sum 
in (1) cannot be calculated in the same way since not all the 
memory entries in the block have a valid value. Another 

problem is that the allocated shared memory is also included 
in the calculation sum.  
 

 
Figure 2. Shared memory blocks and  Actual matrix borders 

 
Inside the kernel function each block has two block IDs bx 
and by and each thread has also two IDs, tx and ty. Lets define 
the block to be the size of B. The data from the global 
memory is copied in the shared memory for higher 
performance of the calculation. Each cell of the matrix is 
copied in the shared memory such that i=B*bx+tx and 
j=B*by+ty. The border cases are when the values B*bx+tx or 
B*by+ty cross the values of the widths and heights of A and 
B. The difference between the allocated shared memory 
blocks and actual matrix sizes is given in Figure 2. 
 
When the sizes of A and B are not divisible with B, the border 
blocks and threads do the calculation anyway and if they are 
not ignored explicitly. Because the memory content is not 
known the results of this calculation will be wrong. The 
border cases are a problem when calculating the product of 
two rectangular matrices with arbitrary dimensions using 
CUDA.  
 

 
Figure 1. GPU memory organization 
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To solve the problem with the border cases in rectangular 
matrix multiplication we have two choices. The first choice is 
to copy only the data within the border of the matrices and 
deal with the border cases inside the kernel function. In this 
way we save on the memory transfer bandwidth that is used 
between the system memory and the device memory. The 
second choice is to increase the width and height of the 
matrices so that their dimensions are divisible with the used 
block size. The fields of the matrices that don’t actually 
belong to them are initialized with zero values so that they 
don’t interfere with the multiplication process. By increasing 
the dimensions of the matrices, the border conditions no 
longer exist and the kernel doesn’t have the need of logical 
branching in the code. 
 
The first approach is defined in Listing 1 as follows: 
 
Listing 1: 
Allocate Matrices A (n x m) and B (p x n); 
If (m mod BLOCK_SIZE) !=0 
    Set new_m to next multiple of BLOCK_SIZE  >m; 
If (n mod BLOCK_SIZE) !=0 
 Set new_n to next  multiple of BLOCK_SIZE  >n; 
If (p mod BLOCK_SIZE) !=0 
 Set new_p to next multiple of BLOCK_SIZE  >p; 
Allocate Matrices NewA and NewB to new_n x new_m and 
new_p x new_n; 
Initialize all fields of NewA and NewB to 0; 
For i in [0:new_n] and j in [0:new_m] 
Set NewA(i,j) = A(i,j) if i<n and j<m; 
For i in [0:new_p] and j in [0:new_m] 
Set NewB(i,j) = B(i,j) if i<n and j<m; 
Do normal kernel multiplication of NewA and NewB on GPU 
such that NewC=NewA*NewB; 
Get subMatrix C with dimensions m x p from NewC starting 
at (0,0); 
Return C; 
 
The first approach moves bigger matrices in kernel memory 
and does the calculation with them. The result will be the 
same since all the fields from the bigger matrices NewA and 
NewB that are not common with A and B are set to 0. In this 
way we get the same result as we would get if using formula 
(1) to multiply the matrices. 
 
The second algorithm on the other hand uses only the 
initialized matrices A and B with their respectful sizes n x m 
and p x n. The border cases are resolved inside the kernel. 
Whenever the kernel multiplication reaches a border block 
that is not fully covered with values from the matrices, the 
shared memory for that block is set to 0. In this way we 
introduce code branching inside the kernel function. However 
since there are more threads inside the calculating blocks than 
needed, we also need to do additional check if the resulting 
matrix C is also inside the defined borders. The second 
algorithm can be defined as: 
 
Algorithm 2: 
Allocate Matrices A and B with dimension n x m and p x n; 

Do modified kernel multiplication of A and B on GPU such 
that C=A*B; 
 Return C; 
 
Modified kernel multiplication: 
Set  bx=BlockID.x,  
by=BlockID.y,  
tx=ThreadID.x, 
 ty=ThreadID.y; 
S=0; 
Declare SharedA and SharedB as shared memory matrices; 
Do for all fields:  
   if (bx and by are a border case)  
   if(bx*BLOCK_SIZE+tx>weightA && by*BLOCK_SIZE > 
heightA) 
 SharedA[tx,ty]=0; 
   Else 
 Load corresponding A element to SharedA 
   if(bx*BLOCK_SIZE+tx>weightB && by*BLOCK_SIZE >   
heightB) 
SharedB[tx,ty]=0; 
   Else 
 Set SharedB[tx,ty] to the corresponding B element 
    Synchronize threads; 
   Do the multiplication for the sub matrix; 
  Synchronize threads; 
 If(Current thread has legal result)//is within the borders 
 Write block sub matrix to device memory (C); 
 Return C; 

IV. TESTING METHODOLOGIES 

All tests were performed on the hardware infrastructure 
presented in Table 1. The Ubuntu 12.04 LTS was installed as 
an operating system, while the implementation was compiled 
with the Nvidia nvcc compiler that is part of the CUDA 5.0 
toolkit. 
 
 

Table 1:  
Utilized hardware for performing all of the tests 
CPU    Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 
RAM    Kingston 32GB @ 1.60GHz 
GPU    NVIDIA GeForce GTX 680 

 
 
Both approaches were compared by measuring the speed 
performance of the CUDA matrix multiplication kernels for 
different sizes of the matrices. Since we are dealing with 
multiplication of two matrices, the width wA of the matrix A 
and the height hB of the matrix B should have the same value, 
therefore, in our experiments we are varying the height hA of 
matrix A and width wB of matrix B. For wA = hB we have 
chosen cases 32 and 64 in order to analyse both approaches.  



The 10th Conference for Informatics and Information Technology (CIIT 2013) 

V.  RESULTS 

This section presents the results obtained from both of the 
matrix multiplication approaches for two cases. For the first 
case of wA = hB = 32, we analyze both of the approaches. 
Fig. 3 presents the speed of the second approach with 
conditional branching, which is normalized over the speed of 
the first approach without conditional branching. 
Additionally, in Fig. 3 we present the speed of first approach 
which is also normalized, thus is always equal to 1. Higher is 
better, therefore, every value of the second approach below 1 
confirms that introducing few more memory transfers 

provides increased performance than having conditional 
branching in the kernel code.  
 
The second experiment that we performed for the second case 
of wA = hB = 64 is presented in Fig. 4. Similar as for the first 
experiment, the results provide an additional confirmation 
that more memory transfers provides increased performance 
than having conditional branching in the kernel code. 
The average improvement of performance is 10.24% for the 
case of wA = hB = 64 and 15.51% improvement in the case 
of wA = hB = 32. 
It is interesting to state that for both cases the results present 
performance increases for some data requirements.  

 
 

Figure 3  Normalized speed for both approaches for the case wA = hB = 32 
 

 

Figure 4  Normalized speed for both approaches for the case wA = hB = 64 
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VI. CONCLUSION 

In this paper we present an analysis the for parallel matrix 
multiplication algorithm on GPU devices. Two approaches 
were implemented and a performance comparison between 
them was performed. The results show that for both cases the 
approach with few more memory transfers outperforms the 
approach with the conditional branching. Additionally, the 
performance increased noticed for some data requirements is 
a subject for future work, as well as analysing other matrix 
multiplication algorithms for GPU devices. 
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