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ABSTRACT

Use of quasigroup transformations to build error-correcting 

codes was first proposed by Gligoroski, Markovski, and 

Kocarev [1]. In this paper, we observe that any quasigroup 

code designed so far, can be modelled as finite state machine. 

Thus we provide a natural generalization of convolutional 

codes and polynomial-time decoding of quasigroup codes. 

I. INTRODUCTION

Let Q is a finite alphabet of Q letters and let nQ is the set 

of all strings of length n over Q . Then a code C is subset of 

nQ of M elements. Elements of the code ic C are called 

codewords. 

Let ! ",d x y denotes the Hamming distance, i.e. the 

number of coordinates in which two strings x and y differ, 

and let  ! "wt x denotes the (Hamming) weight, i.e. the 

number of nonzero coordinates of x . Then we say that the 

code C has (minimum) distance d if

! "# $min , , , ,i j i jd d c c c c C i j% &  ' .               (1)

Usually, the code C is gifted with the ability to efficiently

find the nearest codeword, in terms of Hamming distance, for 

any string of length n. Due to their ability to find the nearest 

codeword, error-correcting codes are used for transmission of 

digital information over a noisy channel. A k-bit message is 

one-to-one encoded into a n-bit codeword and sent over a 

noisy channel. The channel can flip few bits, but the receiver 

may still be able to deduce which codeword has been sent, 

thus recovering the original message. 

In this paper we classify quasigroup codes (according to 

the construction in [1]), as convolutional codes in which the 

combinatorial logic is based on quasigroup operations. With 

this approach we hope we will establish a bridge between 

quasigroup designs and convolutional codes.

II. CONVOLUTIONAL CODES

A convolutional encoder is a circuit made of two parts: 

shift register and combinatorial logic [2] (implemented with 

XOR gates) (Figure 1). 

Figure 1 Convolutional Encoder

Given a information sequence of k letters, convolutional 

encoder produces N output sequences of k letters each, thus 

producing a code with rate 
N

1 . The i -th letter in each of the

N output sequences is obtained by combining the i -th letter 

from the information sequence and previous ,1, () ijj

letters from the information sequence.  Figure 2 shows such a

design of a convolutional encoder with rate ½.

  

Figure 2 Rate 1/2 convolutional encoder

A. Recursive and Non-Recursive Convolutional Encoders

There are two main categories of convolutional encoders:  

recursive and non-recursive convolutional encoders. The   

convolutional encoder from figure 2 is an example of non-

recursive convolutional encoder. More precisely, a 

convolutional encoder is non-recursive if the i -th letter in 

each of the N output sequences is obtained by combining the 

i -th letter from the information sequence and previous 

,1, (* ijj letters the information sequence. If the i -th letter 

in the output sequences depends on all i letters from the 

information sequence, then the encoder is recursive. 

We say that the encoder is systematic if one of the N

output sequences is identical to the input information 

sequence. Figure 3 shows a simple rate ½ non-recursive 

systematic encoder, while figure 4 shows a recursive 

systematic encoder (RSC) with rate ½ .

Figure 3 Rate 1/2 non-recursive systematic encoder

Figure 4 Rate 1/2 recursive systematic encoder
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B. Trellis Diagram and decoding of convolutional codes

A convolutional encoder with m registers is finite state 

machine with m2 states. Trellis diagram is labelled m2 -

partite graph, in which every path represents a valid codeword 

(Figure 5). Vertices of the graph represent all possible m2

states and edges between two vertices represent possible state 

transitions. Edge labels represent the input letters to the 

encoder and the appropriate output letters. Trellis diagram of 

convolutional codes gives a hint about the decoding process; 

if the received sequence does not represent a valid path 

through the trellis diagram, errors have occurred. Then the 

decoding objective is to find the most probable valid path 

though the trellis. Several decoding algorithms exist for 

decoding convolutional codes. The most famous ones are the 

Viterbi algorithm [3,4] and the BCJR algorithm[5]. The 

Viterbi algorithm is universally used and is highly 

parallelizable. Viterbi decoders are easily implemented in 

hardware and software [6]. 

Figure 5 Trellis diagram of a convolutional code

III. QUASIGROUP-BASED CODES

A. Introduction to quasigroups

A quasigroup is an alphabet Q endowed with binary 

operation QQQ  !" : , such that for all Qvu #, there exist 

unique Qyx #, such that 

$
%
&

'"

'"

vuy

vxu
. 

From engineering perspective, quasigroup can be seen as

circuit with two inputs and one output (Figure 6 a)). The 

circuit works the following way: let the input 2 on figure 6 a) 

maintains a constant letter. Then any random string ( nQ# )

that enters on the input 2 will change its representation 

according to the quasigroup transition diagram on figure 6 b.        

Figure 6 Circuit representation of quasigroups

B. Quasigroup codes based on E and D transforms

Given a string ( )nssS ,,1  ' over the alphabet Q and 

random letter Qa# ; E-transform is the string ( )neeE ,,1  '
such that

*
$

*
%

&

"'

"'

+1

11

ii

def

i

def

ese

sae
. 

Circuit representation of the E-transform is given in figure 

7. It is obious that we need memory register to store the 

previous letter.

Figure 7 Circuit representation of E-transform

Given a string ( )nssS ,,1  ' over the alphabet Q and 

random letter Qa# ; D-transform is the string 

( )nddD ,,1  ' such that

*
$

*
%

&

"'

"'

+1

11

ii

def

i

def

ssd

sad
. 

Circuit representation of the D-transform is given in figure 8. 

Figure 8 Circuit representation of D-transform

From these transforms we can build more complex 

transformations. For example, figure 9 shows four D-

transform circuits connected in cascade line. 

Figure 9 Complex quasigroup-based string transformation

Let ( )kmmM ,,1  ' be a message that we wish to encode, 

i.e. a string over Q . Let v , Qv, , be a special letter, i.e. a 

blank space, and let ( )vvV ,, ' is a string of kn + blank 

spaces. Let the string I consists of all letters from M and 

V randomly arranged. For example,

( )vvmmvvmmvvmmI kk ,,,,,,,,,,, 14321 +'  

Then the codeword ( )nccC ,,1  ' that corresponds to the 

message M is obtained from a complex transformation (as in 

Figure 9) over the string I . 
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IV. OPEN PROBLEMS

We have observed the complex quasigroup transformations 

(as in fig. 9) as finite state machines. It is obvious that any 

encoder based on quasigroups will have trellis diagram simila 

to the example on figure 5. Hence quasigroup codes bear 

similarity to convolutional codes. The most important fact 

from this similarity is that quasigroup codes, too, can be 

decoded in polynomial time with the Viterbi algorithm. 

However, in order to make these codes practically 

applicable, several questions must be resolved. Here we list 

three of them.

It is well known that the combinatorial logic of the 

convolutional codes is exclusively based on XOR operations, 

thus achieving low circuit complexity. With the introduction 

of quasigroup operations, increased complexity in the 

combinatorial logic is inevitable. Hence, the first important 

issue that need to be answered is:  

Open problem #1: What is the (circuit) complexity of the 

combinatorial logic based on quasigroup operations? 

Trivially, quasigroup circuit (Figure 6) can be made with 

look-up tables in quadratic complexity. Here we ask if good 

quasigroup circuit can be made with linear complexity.

Convolutional codes are known to coding theorists for 50 

years. Over the time several designs of convolutional 

encoders has proved to be good. One such a design, known as 

RSC encoder is given in the following figure.

Figure 10 RSC encoder

By introducing quasigroups we want to obtain better codes 

in terms of signal-to-noise ratio. In the design process one can 

learn from these designs of convolutional codes and can use 

them in cryptographic designs based on quasigroups (figure 

9). Hence: 

  

Open problem #2: Establish guidelines for design of good 

convolutional codes based on quasigroups

Finally, we would like to address the issue of decoding. 

Quasigropup encoders, as well as convolutional encoders, are 

finite state machines whose operation can be described with 

the so-called trellis diagrams. Hence, the decoding of these 

codes can be successfully done with the Viterby algorithm or 

MAP algorithm. However, we expect that quasigroup 

encoders to have more states than the traditional 

convolutional encoders, thus increasing the decoding 

complexity which will make some quasigroup error-

correcting systems to be impractical for implementation. 

Hence, it seems obvious to ask the following question:

Open problem #3: Design error-correcting system based on 

quasigroups with acceptable decoding complexity
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