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ABSTRACT

It has been demonstrated that the BER (bit error rate) per-
formance of turbo codes may be enhanced by applying an
adaptive control technique to suppress transient dynamics in
the turbo-decoding algorithm. In this work, we extend the
method to a suboptimal decoding scheme, which is more
suitable for practical implementation, and discuss the effect
of metrics quantization.

1. INTRODUCTION

In 1948, Shannon formulated the famous noisy channel cod-
ing theorem [1], which establishes the fundamental lim-
its for digital communication in terms of channel capacity.
Then, in 1993, Berrouet al. introducedturbo codes, which
have been shown to perform at rates extremely close to the
Shannon limit [2]. This powerful class of error-correcting
codes is based upon a constrained random code ensemble,
described by some fixed parameters plus randomness, de-
coded using iterative decoding algorithms.

Recently, in a pioneering paper [3], Richardson has pre-
sented a geometrical interpretation of the turbo decoding
algorithm and formalized it as a nonlinear dynamical sys-
tem. The turbo decoding algorithm appears as an iterative
algorithm aimed at solving a system of2n equations in2n
unknowns, wheren is the block-length size. In a follow-
up of this work [4], Agrawal and Vardy parameterized the
turbo-decoding algorithm, as a dynamical system, in terms
of the SNR (signal-to-noise ratio). Moreover, in [5] it has
been shown that the turbo-decoding algorithm may exhibit
a whole range of phenomena known to occur in nonlinear
systems [6]. These include multiple fixed points, oscillatory
behavior, and even chaos. An adaptive control technique
for suppressing transient chaos, thereby reducing the num-
ber of iterations needed by the turbo-decoding algorithm to
converge has been proposed in [7, 8].

The heart of the turbo-decoding scheme consists of it-
erating themaximum a posteriori (MAP) algorithm [9], ap-
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plied to each constituent code. The MAP algorithm is typi-
cally implemented by a SISO (soft-input soft-output) mod-
ule that computes thea posteriori probability (APP) of the
information symbols or, more generally, a reliability value
for each information symbol. A natural reliability value,
in the binary case, is the logarithm likelihood ratio (LLR).
The LLR may be computed exactly using the BCJR [10]
algorithm. The BCJR algorithm is optimal to generate the
sequence of APPs. However, its computationally complex-
ity does not make it a suitable candidate for practical com-
munication systems. In order to reduce the decoding com-
plexity of the MAP algorithm, researchers have developed
other versions of the MAP algorithm requiring less compu-
tation, without major drawback in its performance. Among
those algorithms are Log-MAP and Max-Log-MAP [11]. In
this work, we extend our previous results concerning the
adaptive feedback control for the suppression of transient
dynamics. Namely, rather than considering the BCJR al-
gorithm we work with the suboptimal Max-Log-MAP de-
coder. Furthermore, we discuss the effect of the LLR quan-
tization on the system performance.

2. TURBO CODES AS NONLINEAR SYSTEMS

The turbo code consists of a parallel concatenation of two
recursive systematic binary convolutional codes, CC1 and
CC2, separated by a random interleaver [2]. Leti be the
information bit sequence of lengthn at the input to the
turbo encoder, and letp1(i) (resp. p2(i)) be the parity
bits produced by the first (resp. second) encoder. The in-
put sequence of the second encoder has the same Ham-
ming weight asi, but the bits are rearranged due to a per-
mutation defined by the choice of the random interleaver,
π. The information bit sequence,i, along with the par-
ity bit sequencesp1(i) andp2(i), forms a turbo codeword
(i, p1(i),p2(i)) of length3n.

We assume that the turbo code is transmitted over an
AWGN (additive white Gaussian noise) binary-input mem-
oryless channel, using the BPSK (binary phase shift keying)
modulation. We denote the transmitted turbo codeword by
(s0, s1, s2) ≡ (i,p1(i), p2(i)).



Let c0, c1 andc2 be the channel outputs corresponding
to the input sequencess0, s1 ands2, respectively. The turbo
decoder consists of two components: a decoder DEC1 for
the convolutional code CC1, and a decoder DEC2 for the
code CC2. These decoders use iteratively the MAP algo-
rithm [9] in order to compute the extrinsic information,Xi,
of the information bits. The input for the decoder DEC1
(resp. DEC2) is the extrinsic informationX2 (resp. X1)
from the decoder DEC2 (resp. DEC1), which is used as a
priori information after interleaving (resp. deinterleaving).

The turbo decoding algorithm may be described by a
discrete-time dynamical system of the form:

X1(l + 1) = F1[X2(l); c
0, c1] (1)

X2(l) = F2[X1(l); c
0, c2] (2)

whereFi = (F11, . . . , F1n) are nonlinear functions which
depend on the constituent codes. Equations (1)-(2) define
ann-dimensional mapping, because there are onlyn inde-
pendent variables, namelyX1 (or alternativelyX2). The
quantitiesc0, c1 and c2 are completely characterized by
the channel likelihood ratios. Consequently, the mapping
(1)-(2) depends on3n parameters.

After l iterations, a hard decision on thej-th bit can be
made according to the sign of the LLR:

Lj(l) = log
p1

j (l)

p0
j (l)

= X1j(l) + X2j(l) +
4

σ2
c0
j (3)

wherep0
j (l) andp1

j (l) are the probabilities that thej-th bit
is either 0 or 1, andσ2 represents the noise variance.

3. LOG-MAP AND MAX-LOG-MAP ALGORITHMS

The computational complexity of the BCJR iterative algo-
rithm may be reduced by transferring the recursions into the
log domain and invoking an approximation to dramatically
reduce the complexity. Namely, the approximation (of the
max operation) is the following:

max∗(x, y) = ln(ex + ey)

= max(x, y) + ln(1 + e−|y−x|)

= max(x, y) + fc(|y − x|)

This corresponds to theLog-MAP algorithm. Such algo-
rithm, though most complex, offers the best BER perfor-
mance. When the correction termfc(|y − x|) is ignored in
the computation, the algorithm is called theMax-Log-MAP
algorithm. The Max-Log-MAP algorithm is suboptimal but
also the least complex MAP algorithm [11].

In a real field, a conventional turbo decoder uses Log-
MAP or Max-Log-MAP algorithm for constituent decod-
ing. In the sequel, we briefly describe both algorithms.

3.1. Log-MAP Algorithm

Consider a trellis structure of a rate1/nr constituent de-
coder for turbo decoding. At any decoding step,k, the
branch metricγk(s′, s) between states ands′ is defined in
log domain as follows [11]:

log γk(s′, s) = uk(Lcyk,0 + La(uk)) +

nr−1
∑

i=1

Lcyk,ixk,i

whereuk is thek-th information symbol,xk,i is thei-th par-
ity symbol corresponding touk, andyk,i is thei-th received
symbol corresponding touk andxk,i. Lc is a channel relia-
bility obtained from SNR estimation.La(uk) is an a priori
information foruk. In log domain, the state metricsαk(s)
andβk−1(s

′) are defined by the following recursions:

log αk(s) = log

(

∑

s′

elog αk−1(s
′)+log γk(s′,s)

)

(4)

log βk−1(s
′) = log

(

∑

s

elog βk(s)+log γk(s′,s)

)

(5)

In the above, normalization is not considered. With these
metric values, the APP value of the Log-MAP algorithm
can be determined as follows:

L(ûk) = log

(

∑

j eM0(j)

∑

j eM1(j)

)

(6)

Muk
is thej-th metric sum of state metrics and branch met-

ric in case of information symboluk, where the metric sums
have been rearranged by their descending order in magni-
tude. Thus,Muk

(0) means the best metric sum foruk [11].

3.2. Max-Log-MAP Algorithm

Max-Log-MAP algorithm is a simplified version of Log-
MAP algorithm by the following approximations of the state
metrics and APP values:

log αk(s) ≃ max
s′

(log αk−1(s
′) + log γk(s′, s))

log βk−1(s
′) ≃ max

s
(log βk(s) + log γk(s′, s))

L(ûk) ≃ M0(0) − M1(0) (7)

In (7), the APP value is represented by the difference be-
tween the best metric sums for information symbol 0 and 1
at any decoding stepk, M0(0) andM1(0), respectively. The
Max-Log-MAP algorithm does not require SNR estimates.
However, it exhibits about 0.3-0.4 dB performance degrada-
tion relative to the Log-MAP algorithm, with perfect SNR
estimation [11].



4. ADAPTIVE CONTROL ALGORITHM

In [7, 8] we have proposed an adaptive control technique
for suppressing transient chaos, thereby reducing the num-
ber of iterations needed by the turbo-decoding algorithm to
converge. In fact, in the so-calledwaterfall region the turbo
decoding-algorithm converges either to the chaotic invariant
set or to the “unequivocal” fixed point, after a long transient
behavior [5]. In some cases, the algorithm spends a few
thousand iterations before reaching the fixed point solution.
As SNR increases, the average chaotic transient lifetime [6]
decreases and, consequently, the number of iterations nec-
essary to converge decreases. A schematic block diagram of
the turbo decoder including the adaptive control is shown in
Fig. 1, where in [7, 8] the SISO module was implemented by
the BCJR algorithm. Basically, the control technique adap-
tively attenuates extrinsic LLRs, thus improving the rate
of convergence and the BER performance, for turbo codes.
Namely, the control algorithm reads:

g(Xi) = Γe−λ|Xi|Xi, (8)

whereΓ ∈ (0, 1] andλ ≥ 0 are control parameters.

5. SIMULATION RESULTS

In this work we consider a rate-1/2 turbo code based upon
identical constituent recursive convolutional codes, with gen-
eratorsG = (37, 21), and utilizing the Max-Log-MAP al-
gorithm as SISO modules. The codewords are transmit-
ted over an AWGN channel using BPSK modulation. The
length of the interleaver isn = 1024.
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Fig. 1. Turbo decoder with adaptive control:Xi are extrin-
sic information;cj is the channel output corresponding to
the input sequencesj ; g(·) is the control function (8).
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Fig. 2. BER performance of the turbo code utilizing
the Max-Log-MAP algorithm with/without adaptive control
(Γ = 0.75, λ = 0), as a function of the number of iterations.
The coding gain increases with the number of iterations.

The simulation results corresponding to the application
of the adaptive control method (Γ = 0.75, λ = 0), in con-
junction to the Max-Log-MAP algorithm are shown in Fig. 2,
as a function of the number of iterations. From Fig. 2, one
can appreciate the coding gain due to the adaptive control,
as the number of iterations progresses. Afterl = 16 itera-
tions, the turbo-decoding algorithm with control exhibits an
average gain of∼ 0.25 dB versus the case without control.
These results correspond to the waterfall region of the turbo
code. As in [8], we found that the control is not effective
in the error floor region, where no transient chaos occurs.
Also, we stress that the control does not work well when
the interleaver size is large (≫ 1000)

5.1. Dependence on the Control Parameters

Figure 3 illustrates the effect of the control parametersΓ
andλ on the BER performance of the turbo code, forl = 16
iterations. Namely, four representative cases are analyzed:

i) Γ = 0.75, λ = 0
ii) Γ = 0.75, λ = 0.01
iii) Γ = 0.75, λ = 0
iv) Γ = 0.9, λ = 0.01

It follows that, unlike what observed for the BCJR algo-
rithm [8], the best performance is achieved basically when
Γ = 0.75 andλ = 0. In this case, settingλ > 0 offers
very little gain, as visible in Fig. 3. Also, with the control
parameters as in i), the error floor is not affected. On the
other hand, decreasing the value ofΓ, results in the error
floor rising.
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Fig. 3. Dependence of the BER performance on the control
parametersΓ andλ, for l = 16 iterations. Note that the best
performance is obtained essentially forΓ = 0.75, while the
exponential factorλ has very little influence on the BER.

5.2. Effect of Quantization

We now discuss the effect of the metrics quantization on
the BER performance. The corresponding results forl = 4
iterations are reported in Fig. 4. We compare the perfor-
mances, with adaptive control, when all variables used by
the Max-Log-MAP algorithm are quantized. In particular,
we consider an 8-bytes floating-point representation versus
1-byte fixed point, with 4 bits devoted to the decimal part.
From Fig. 4 we conclude that the quantization error does
not affect significantly the BER performance of the turbo-
decoding algorithm with adaptive control.
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Fig. 4. Effect of the variables quantization on the BER per-
formance, with adaptive control (Γ = 0.75, λ = 0), for
l = 4 iterations.

6. CONCLUSIONS

In this work, we have extended an adaptive control method
for turbo codes to the case of suboptimal decoding, employ-
ing the Max-Log-MAP algorithm. The latter is more prac-
tical than the BCJR algorithm. The simulation results show
that the method exhibits a considerable coding gain in the
waterfall region of the turbo code. Finally, the effect of the
metrics quantization is discussed.
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