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ABSTRACT plied to each constituent code. The MAP algorithm is typi-
cally implemented by a SISO (soft-input soft-output) mod-

It has been demonstrated that the BER (bit error ratg) P 1e that computes tha posteriori probability (APP) of the
formance of turbo codes may be enhanced by applying an.

adaptive control technique to suppress transient dynamics i Information symbols or, more generally, a reliability value
P . qu bpre y Yor each information symbol. A natural reliability value,
the turbo-decoding algorithm. In this work, we extend the

method to a suboptimal decoding scheme, which is morein the binary case, is the logarithm likelihood ratio (LLR).
suitable for practical implementation, and discuss the e1’“fectThe LLR may be computed exactly using the BCJR [10]

of metrics quantization algorithm. The BCJR algorithm is optimal to generate the
' sequence of APPs. However, its computationally complex-
ity does not make it a suitable candidate for practical com-
1. INTRODUCTION munication systems. In order to reduce the decoding com-
plexity of the MAP algorithm, researchers have developed
In 1948, Shannon formulated the famous noisy channel cod-other versions of the MAP algorithm requiring less compu-
ing theorem [1], which establishes the fundamental lim- tation, without major drawback in its performance. Among
its for digital communication in terms of channel capacity. those algorithms are Log-MAP and Max-Log-MAP [11]. In
Then, in 1993, Berroet al. introducedturbo codes, which this work, we extend our previous results concerning the
have been shown to perform at rates extremely close to theadaptive feedback control for the suppression of transient
Shannon limit [2]. This powerful class of error-correcting dynamics. Namely, rather than considering the BCJR al-
codes is based upon a constrained random code ensemblgorithm we work with the suboptimal Max-Log-MAP de-
described by some fixed parameters plus randomness, dezoder. Furthermore, we discuss the effect of the LLR quan-
coded using iterative decoding algorithms. tization on the system performance.
Recently, in a pioneering paper [3], Richardson has pre-

sentgd a geometrlca'l mtgrpretaﬂon qf the turbo Qecodmg 2 TURBO CODESAS NONL INEAR SYSTEMS
algorithm and formalized it as a nonlinear dynamical sys-

tem. The turbo decoding algorithm appears as an Iterativerhe turbo code consists of a parallel concatenation of two

algorithm aimed at solving a system i equations irén recursive systematic binary convolutional codes, CC1 and

unknowns, where: is the block-length size. In a follow- CC2, separated by a random interleaver [2]. L&t the
up of this work [4], Agrawal and Vardy parameterized the infor}nation bit sequence of length at the input to the

turbo-decoding algorithm, as a dynamical system, in terms . " o <o der and lep, (3) (res . .

; . . : . : p. p,(i)) be the parity

of the SNR (signal-to-noise ratio). Moreover, in [5] it has produced by the firlst (resp. sec?)nd) encoder. The in-
been shown that the turbo-decoding algorithm may exhibit put sequence of the second encoder has the same Ham-
a whole range of phenomena known to occur in nonlinearming weight asi, but the bits are rearranged due to a per-

systems [6]. These include multiple fixed points, oscillatory mutation defined by the choice of the random interleaver
behavior, and even chaos. An adaptive control technique ’

for suppressing transient chaos, thereby reducing the num
ber of iterations needed by the turbo-decoding algorithm to (i, p, (3), po(3)) Of length3n
s 1 s B2 )

converge has been proposed in [7, 8]. _ . We assume that the turbo code is transmitted over an
The heart of the turbo-decoding scheme consists of it- \yGN (additive white Gaussian noise) binary-input mem-
erating themaximuma posteriori (MAP) algorithm [9], ap- v jess channel, using the BPSK (binary phase shift keying)
E-mails: dspasov@csd. edu, maggi 0@ eee. or g, modulation. We denote the transmitted turbo codeword by
| kocar ev@icsd. edu. (8,8, 8) = (4,p,(4), ps(2)).

. The information bit sequence, along with the par-
ity bit sequencegp, () andp, (i), forms a turbo codeword




Let c?, ¢! andc? be the channel outputs corresponding 3.1. Log-MAP Algorithm
to the input sequenceX, s* ands?, respectively. The turbo _ _ _
decoder consists of two components: a decoder DEC1 forconsider a trellis structure of a ralgn, constituent de-
the convolutional code CC1, and a decoder DEC2 for the 0der for turbo decoding. At any decoding stép, the
code CC2. These decoders use iteratively the MAP algo-Pranch metricy,,(s', s) between state ands” is defined in
rithm [9] in order to compute the extrinsic informatiak;, log domain as follows [11]:
of the information bits. The input for the decoder DEC1
(resp. DEC2) is the extrinsic informatiok, (resp. X;)
from the decoder DEC2 (resp. DEC1), which is used as a
priori information after interleaving (resp. deinterleaving).
The turbo decoding algorithm may be described by a whereuy, is thek-th information symbolg;, ; is thei-th par-
discrete-time dynamical system of the form: ity symbol corresponding toy,, andyy, ; is thei-th received
symbol corresponding ta, andzy, ;. L. is a channel relia-
Fi[Xa(1); ¢, '] (1) bility obtained from SNR estimationL, (u;) is an a priori
Fa[X1(1); ¢, % (2)  information foruy. Inlog domain, the state metries;(s)
andgy_1(s") are defined by the following recursions:

n,.—1

log Yk (s',8) = wr(Leyno + La(ur)) + Y Leyhitrs
1=1

Xi(l+1) =
Xo(l) =

whereF; = (F11,..., Fi,) are nonlinear functions which
depend on the constituent codes. Equations (1)-(2) define
ann-dimensional mapping, because there are enigde-
pendent variables, namely, (or alternativelyX,). The
guantitiesc’, ¢' andc? are completely characterized by
the channel likelihood ratios. Consequently, the mapping
(1)-(2) depends ofn parameters.

After [ iterations, a hard decision on thieth bit can be
made according to the sign of the LLR:

pj(l)
p; (l)

wherep (1) andp} (1) are the probabilities that thgth bit
is either 0 or 1, and? represents the noise variance.

1og ak<5) = log (Z 6108" akl(s’)+log'yk(s’,s)> (4)

s’

S

log f-1(s) = log (Z el"”"“’“"“““”> (5)

In the above, normalization is not considered. With these
metric values, the APP value of the Log-MAP algorithm
can be determined as follows:

R Zj eMo(4)
L(ay) = log (Zje]\ll(J)

L;(l) = log = X1;(1) + Xo;(1) + Uico, (3)
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(6)

M, is thej-th metric sum of state metrics and branch met-
ric in case of information symbal;,, where the metric sums
have been rearranged by their descending order in magni-
tude. Thus}/,, (0) means the best metric sum fof [11].

The computational complexity of the BCJR iterative algo-
rithm may be reduced by transferring the recursions into the
log domain and invoking an approximation to dramatically
reduce the complexity. Namely, the approximation (of the \Max-Log-MAP algorithm is a simplified version of Log-
max operation) is the following: MAP algorithm by the following approximations of the state
metrics and APP values:

3. LOG-MAP AND MAX-LOG-MAP ALGORITHMS

3.2. Max-Log-MAP Algorithm

max*(z,y) = In(e” +¢€Y)
= max(z,y) + In(1 4+ e V77
= max(z,y) + fe(ly — z[)

log a(s)

log Bp_1(s") =~
L(iy) =~

max (log a—1(s") + log vk (s', 5))
max (log Bk (s) + log vk (s', s))
Mq(0) — M, (0) @)

2

This corresponds to theog-MAP algorithm. Such algo-
rithm, though most complex, offers the best BER perfor-

mance. When the correction terfp(|y — ) is ignored in
the computation, the algorithm is called thkax-Log-MAP

In (7), the APP value is represented by the difference be-
tween the best metric sums for information symbol 0 and 1

algorithm. The Max-Log-MAP algorithm is suboptimal but at any decoding stefg M, (0) andM;(0), respectively. The

also the least complex MAP algorithm [11].

Max-Log-MAP algorithm does not require SNR estimates.

In a real field, a conventional turbo decoder uses Log- However, it exhibits about 0.3-0.4 dB performance degrada-

MAP or Max-Log-MAP algorithm for constituent decod-

ing. In the sequel, we briefly describe both algorithms.

tion relative to the Log-MAP algorithm, with perfect SNR
estimation [11].



4. ADAPTIVE CONTROL ALGORITHM

In [7, 8] we have proposed an adaptive control technique . '

for suppressing transient chaos, thereby reducing the num- ¥
ber of iterations needed by the turbo-decoding algorithm to ¢ o .
converge. In fact, in the so-callegiterfall region the turbo
decoding-algorithm converges either to the chaotic invariant o
set or to the “unequivocal” fixed point, after a long transient % 1 *
behavior [5]. In some cases, the algorithm spends a few e
thousand iterations before reaching the fixed point solution.

As SNR increases, the average chaotic transient lifetime [6] o+, | + 1 teraton oo . %

—— 2 iterations

decreases and, consequently, the number of iterations nec- *- 2 terations (control) X

—— 4 iterations

essary to converge decreases. A schematic block diagram of  4iterations (control) I

—— 16 iterations g

the turbo decoder including the adaptive control is shown in O 16 terations (control | ‘ ‘ ‘
Fig. 1, wherein [7, 8] the SISO module was implemented by 0 08 Y s z e
the BCJR algorithm. Basically, the control technique adap-

tively attenuates extrinsic LLRs, thus improving the rate Fig. 2. BER performance of the turbo code utilizing
of convergence and the BER performance, for turbo codes.the Max-Log-MAP algorithm with/without adaptive control
Namely, the control algorithm reads: (' = 0.75, A = 0), as a function of the number of iterations.

The coding gain increases with the number of iterations.

9(X;) =Te XX, (8)
wherel" € (0,1] andA > 0 are control parameters. The simulation results corresponding to the application
of the adaptive control method' (= 0.75, A = 0), in con-

5. SIMULATION RESULTS junction to the Max-Log-MAP algorithm are shown in Fig. 2,
as a function of the number of iterations. From Fig. 2, one
In this work we consider a rate-1/2 turbo code based uponcan appreciate the coding gain due to the adaptive control,
identical constituent recursive convolutional codes, with gen-as the number of iterations progresses. After 16 itera-
eratorsG' = (37,21), and utilizing the Max-Log-MAP al-  tions, the turbo-decoding algorithm with control exhibits an
gorithm as SISO modules. The codewords are transmit-average gain of 0.25 dB versus the case without control.
ted over an AWGN channel using BPSK modulation. The These results correspond to the waterfall region of the turbo
length of the interleaver is = 1024. code. As in [8], we found that the control is not effective
in the error floor region, where no transient chaos occurs.
Also, we stress that the control does not work well when

0 R the interleaver size is largex{ 1000)
z, SISO1
l T 5.1. Dependence on the Control Parameters
X, A,
1! Figure 3 illustrates the effect of the control parameféers
g and\ on the BER performance of the turbo code,fer 16
¢! L C 1 iterations. Namely, four representative cases are analyzed:
I g )T =075, A=0
- X i) 0 =0.75,A = 0.01
1A i3 iy T = 0.75, A = 0
o 1 — iv) ' =0.9,\ =0.01
z, SISO2 It follows that, unlike what observed for the BCJR algo-
c? rithm [8], the best performance is achieved basically when

I' = 0.75 and A = 0. In this case, setting > 0 offers
_ . _ _ very little gain, as visible in Fig. 3. Also, with the control
Fig. 1. Turbo decoder with adaptive controX; are extrin-  parameters as in i), the error floor is not affected. On the

sic information;c’ is the channel output corresponding to other hand, decreasing the valuelafresults in the error
the input sequence’; g(-) is the control function (8). floor rising.



MLM (no control)
—— MLM ("=0.90,A=0)  H
+ MLM (7=0.90, A=0.01)
—— MLM ("=0.75, \=0)

- MLM (=0.75, A=0.01)
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Fig. 3. Dependence of the BER performance on the control
parameter$’ and, for [ = 16 iterations. Note that the best
performance is obtained essentially for= 0.75, while the

exponential factoA has very little influence on the BER.

5.2. Effect of Quantization

We now discuss the effect of the metrics quantization on
the BER performance. The corresponding results fer4
iterations are reported in Fig. 4. We compare the perfor-
mances, with adaptive control, when all variables used by
the Max-Log-MAP algorithm are quantized. In particular,

we consider an 8-bytes floating-point representation versus

1-byte fixed point, with 4 bits devoted to the decimal part.

From Fig. 4 we conclude that the quantization error does
not affect significantly the BER performance of the turbo-

decoding algorithm with adaptive control.
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Fig. 4. Effect of the variables quantization on the BER per-
formance, with adaptive control'(= 0.75, A = 0), for
[ = 4 iterations.

6. CONCLUSIONS

In this work, we have extended an adaptive control method
for turbo codes to the case of suboptimal decoding, employ-
ing the Max-Log-MAP algorithm. The latter is more prac-
tical than the BCJR algorithm. The simulation results show
that the method exhibits a considerable coding gain in the
waterfall region of the turbo code. Finally, the effect of the
metrics quantization is discussed.

7. REFERENCES

[1] C. E. Shannon, “A mathematical theory of commu-
nication,” Bell Systems Technical Journal, vol. 27,
pp. 379-423, pp. 623-56, 1948.

[2] C. Berrou, A Glavieux, and P. Thitimajshima, “Near
Shannon limit error-correcting coding and decoding:
Turbo-Codes,Proc. |EEE International Communica-
tions Conference, pp. 1064—70, 1993.

[3] T. Richardson, “The geometry of turbo-decoding dy-
namics,” IEEE Trans. Information Theory, vol. 46,
pp. 9-23, 2000.

D. Agrawal and A. Vardy, “The turbo decoding algo-
rithm and its phase trajectorie$EEE Trans. Informa-
tion Theory, vol. 47, No. 2, pp. 699-722, 2001.

(4]

[5] Z. Tasev, L. Kocarev and G.M. Maggio, “Bifurcations
and chaos in the turbo decoding algorithiafoc. IS
CAS 2003, Bangkok, Thailand, 2003.

[6] E. Ott, Chaos in dynamical systems, Cambridge Uni-

versity Press, New York, 1993.
[7]

L. Kocarev, Z. Tasev and A. Vardy, “Improving turbo
codes by control of transient chaos in turbo-decoding
algorithms,” Electronics Letters, vol. 38, no. 20,

pp. 1184-6, 2002.

L. Kocarev, Z. Tasev and G. M. Maggio, “Applications
of nonlinear dynamics to the turbo decoding algo-
rithm,” Proc. ISCAS 2003, Bangkok, Thailand, 2003.

(8]

[9] R.W. Chang and J.C. Hancock, “On receiver structures
for channels having memory,EEE Trans. IT, vol. 12,

pp. 463-468, 1966.

L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optimal
decoding of linear codes for minimizing symbol er-
ror rate,”|EEE Trans. Information Theory, vol. IT-20,
no. 2, pp. 284-287, 1974.

[10]

[11] P. Robertson, E. Villebrun, and P. Hoeher, “A com-
parison of optimal and sub-optimal MAP decoding al-
gorithms operating in the log domairProc. 1CC95,

pp. 1009-13, 1995.



