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CANONICAL BIASSOCIATIVE GROUPOIDS

Biljana Janeva, Snežana Ilić, and
Vesna Celakoska-Jordanova

Abstract. In the paper Free biassociative groupoids, the variety of biasso-
ciative groupoids (i.e., groupoids satisfying the condition: every subgroupoid
generated by at most two elements is a subsemigroup) is considered and free
objects are constructed using a chain of partial biassociative groupoids that
satisfy certain properties. The obtained free objects in this variety are not
canonical. By a canonical groupoid in a variety V of groupoids we mean
a free groupoid (R, ∗) in V with a free basis B such that the carrier R is
a subset of the absolutely free groupoid (TB , ·) with the free basis B and
(tu ∈ R ⇒ t, u ∈ R & t∗u = tu). In the present paper, a canonical description
of free objects in the variety of biassociative groupoids is obtained.

1. Preliminaries

Let G = (G, ·) be a groupoid and a, b ∈ G. We denote by 〈a, b〉 the subgroupoid
of G generated by a, b and by 〈a〉 the subgroupoid generated by a. Clearly, 〈a〉 ⊆
〈a, b〉 and if b ∈ 〈a〉, then 〈a, b〉 = 〈a〉; specially, 〈a, a〉 = 〈a〉. The subgroupoids
〈a, b〉 and 〈b, a〉 are equal.

Let a1, a2, . . . , an be a finite sequence of elements in a groupoid G. We denote
by a1a2 · · · an the product of the sequence a1, a2, . . . , an in G defined as follows:

i) if n = 3, then a1a2a3
def= a1(a2a3) and

ii) if n � 3, then a1a2 · · · an
def= a1(a2 · · · an).

We call a1a2 · · · an the main product of the sequence a1, a2, . . . , an. If n = 1 and
n = 2, then a1 and a1a2 will also be called the main products of the sequences a1

and a1, a2 respectively. If c = a1a2 · · · an, then we say that c is presented as a main
product of the sequence a1, a2, . . . , an.

Let G be a groupoid and A ⊆ G. If Q is the subgroupoid of G generated by
A, i.e., Q = 〈A〉, then Q =

⋃{Ak : k � 0}, where A0 = A, Ak+1 = Ak ∪AkAk.
If x ∈ Q, then a hierarchy of x in Q is the nonnegative integer χQ(x), defined

by χQ(x) = min{k ∈ N0 : x ∈ Ak}, where N0 is the set of nonnegative integers.
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In the sequel B will be an arbitrary nonempty set whose elements are called
variables. By TB we will denote the set of all groupoid terms over B in the signa-
ture ·. The terms are denoted by t, u, v, . . . , x, y, · · · TB = (TB , ·) is the absolutely
free groupoid with the free basis B, where the operation is defined by (u, v) �→ uv.
The groupoid TB is injective, i.e., if x, y, v, w ∈ TB , then xy = vw ⇒ x = v, y = w;
in other words the operation · is an injective mapping.

Note that TB =
⋃{Bk : k � 0}, where B0 = B, Bk+1 = Bk ∪ BkBk. The

hierarchy χ : TB → N0, defined by χ(t) = min{k ∈ N0 : t ∈ Bk}, for any t ∈ TB ,
has the property:

χ(tu) = 1 + max{χ(t), χ(u)},
for all t, u ∈ TB.

For any term v ∈ TB we define the length |v| of v and the set of subterms P (v)
of v in the following way:

|b| = 1, |tu| = |t| + |u| ; P (b) = {b}, P (tu) = {tu} ∪ P (t) ∪ P (u),

for any b ∈ B and t, u ∈ TB .

2. Main biproducts

Let t, u ∈ TB and 〈t, u〉 be the subgroupoid of TB generated by t, u:

〈t, u〉 = {t, u, tt, tu, ut, uu, t(tt), t(tu), t(ut), t(uu), (tt)t, (tu)t, · · · }.
Each element x of 〈t, u〉 is a product of a finite sequence of elements x1, . . . , xn

(n � 1), where each xi is either t or u, i.e., {x1, x2, . . . , xn} ⊆ {t, u}. Any such
product is constructed by the two generators t, u and therefore we call it a binary
product or shortly biproduct.

Thus, if a term x ∈ TB is an element of 〈t, u〉, then we say that x has a
representation as a biproduct (or shortly, x is a biproduct) with the generating pair
{t, u} and denote it by x〈t,u〉. (In this case we also say that x is the carrier of the
biproduct x〈t,u〉.)

If u = t or u ∈ 〈t〉, then 〈t, u〉 = 〈t〉. In that case if x ∈ 〈t〉, we say again that
x is a biproduct with the generator t and denote it by x〈t〉. Specially, t ∈ 〈t〉 and t
has a representation as a biproduct with the generator t: t〈t〉 = t. We say that t〈t〉
is a trivial biproduct of t. Since t ∈ 〈t, u〉 we have t〈t,u〉 = t and we say also that
t〈t,u〉 is the trivial biproduct of t in 〈t, u〉.

If t /∈ 〈u〉 and u 	∈ 〈t〉, then no two elements of the subgroupoid 〈t, u〉 are equal,
since the groupoid TB is injective. Therefore:

Proposition 2.1. If t, u, x are terms of TB and x is such that x ∈ 〈t, u〉,
t 	∈ 〈u〉 and u /∈ 〈t〉, then x has a unique representation as a biproduct with the
generating pair {t, u}.

Note that a term of TB may have representations as biproducts with different
pairs of generators.

Example 2.1. Let a, b be two distinct variables and x the term ((ab)b)(ab).
1) x ∈ 〈x〉, and thus x〈x〉 = x is the biproduct of x with the generator x.
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2) Put t = (ab)b and u = ab. Then x ∈ 〈t, u〉 and x〈t,u〉 = tu is the biproduct
of x with the generating pair {t, u}.

3) If u = ab and v = b, then x ∈ 〈u, v〉 and x〈u,v〉 = (uv)u is the biproduct of
x with the generating pair {u, v}.

4) x ∈ 〈a, b〉 and thus x〈a,b〉 = ((ab)b)(ab) is the biproduct of x with the
generating pair {a, b}.

(Note that there is no biproduct of x other than those enumerated above.)

A biproduct x〈t,u〉 of a term x is said to be maximal in TB if and only if for
any biproduct x〈α,β〉 of x, the hierarchy χ〈α,β〉(x) does not exceed the hierarchy
χ〈t,u〉(x), i.e., χ〈α,β〉(x) � χ〈t,u〉(x).

Proposition 2.2. Any term x of TB has a finite number of representations as
a biproduct in TB, i.e., x ∈ TB is the carrier of a finite number of biproducts in
TB. Any term x of TB is the carrier of maximal biproducts in TB.

Proof. The length |x| of any x ∈ TB is finite, and thus the set P (x) of
subterms of x is finite. As the generators of any biproduct of x are subterms of x,
and the set of subterms P (x) of x is finite, it follows that x has a finite number of
biproducts. The set of nonnegative integers that are hierarchies of x (with respect
to the pair of generators of all biproducts of x, including the pairs {t, t} = {t}) is
finite, and thus it has the largest element. Therefore, there is the largest hierarchy
of x, i.e., a maximal biproduct of x. �

Note that a given term x of TB may have more than one maximal biproducts.

Example 2.2. Let x = ((ab)b)(b2(ab)) (where a, b are variables). Put t = ab
and u = b. Then x〈t,u〉 = (tu)(u2t) and χ〈t,u〉(x) = 3. If we take {a, b} as the
generating pair, then x〈a,b〉 = ((ab)b)(b2(ab)) is a biproduct of x and χ〈a,b〉(x) = 3.
For all other biproducts x〈α,β〉 one obtains that χ〈α,β〉(x) � 3. Thus, x〈t,u〉 and
x〈a,b〉 are maximal biproducts of x.

Let x = x1x2 · · ·xm be the main product of x1, x2, . . . , xm in TB . If

{x1, x2, . . . , xm} ⊆ {t, u},
for some terms t, u of TB , then we call x1x2 · · ·xm the main biproduct of x in TB

with the generating pair {t, u} and denote it by xt,u. (If u = t, i.e., the generating
“pair” is {t, t}, we write xt instead of xt,t.)

Below we will state some properties about main biproducts.
(1) Note that any term x of TB has at least one main biproduct – the trivial

one, xx. If x ∈ TB �B, then x = αβ for some α, β ∈ TB , and xα,β = αβ is another
main biproduct of x in TB .

(2) The hierarchy of a main biproduct x1x2 · · ·xm, with a generating pair {t, u},
equals m− 1. Therefore, if two main biproducts x1x2 · · ·xm and y1y2 · · · ym+k are
maximal biproducts of x in TB , then they have to satisfy k = 0 (or the hierarchies
would differ) and xi = yi, for 1 � i � m.

Proposition 2.3. If x ∈ TB has two nontrivial main biproducts xt,u and xv,w

in TB, then one generator of the one generating pair coincides with a generator of
the other generating pair.
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Proof. Let xt,u = x1x2 · · ·xm and xv,w = y1y2 · · · yn be two main biproducts
of x in TB . Then x1x2 · · ·xm = y1y2 · · · yn implies x1 = y1. Since xν ∈ {t, u}
and yλ ∈ {v, w} it follows that x1 is either t or u, and y1 is either v or w. If, for
example, x1 = t and y1 = v, then v = t (and in that case xt,u = xt,w). �

Using the property (2) stated above, we obtain the following:

Theorem 2.1. If x = x1x2 · · ·xm and x = x′1x
′
2 · · ·x′n are main biproducts

of x in TB with the same generating pair {t, u}, then m = n and xi=x′i, for i =
1, 2, . . . ,m. Specially, any maximal biproduct of x ∈ TB, that is a main biproduct,
is uniquely determined.

3. A construction of canonical biassociative groupoids

A groupoid G = (G, ·) is said to be biassociative [1] if and only if for any a, b ∈
G the subgroupoid S of G generated by {a, b}, i.e., S = 〈a, b〉, is a subsemigroup
of G. The class of all biassociative groupoids will be denoted by Bass. This class
is hereditary and closed under the formation of homomorphic images and direct
products, i.e., Bass is a variety of groupoids.

Assuming that B is a nonempty set and TB = (TB , ·) the absolutely free
groupoid with the free basis B, we are looking for a canonical groupoid in Bass,
i.e., a groupoid R = (R, ∗) with the following properties:

i) B ⊂ R ⊂ TB; ii) tu ∈ R ⇒ t, u ∈ R; iii) tu ∈ R ⇒ t ∗ u = tu
iv) R is a free groupoid in Bass with the free basis B.

A “candidate” for the carrier R of the desired groupoid R is the set defined by:

(3.1) R = {x ∈ TB : every biproduct of any subterm of x is a main biproduct}.
The following properties of R are obvious corollaries of (3.1).

Proposition 3.1. a) R satisfies i) and ii).
b) x, y ∈ R ⇒ {xy /∈ R ⇔ xy has a biproduct that is not a main

biproduct in TB}.
c) x, y ∈ TB ⇒ {xy ∈ R ⇔ x, y ∈ R & every biproduct of any subterm

of xy in TB is a main biproduct}.
Lemma 3.1. For any x ∈ R there is a unique maximal biproduct of x in TB

that is a main biproduct.

Proof. Existence. By Proposition 2.2, any x ∈ TB has maximal biproducts
in TB and thus any x ∈ R has maximal biproducts in TB . By the definition of R,
every biproduct of any subterm of x is a main biproduct and therefore the maximal
biproducts of x are main biproducts, too.

Uniqueness. Let x ∈ R and x〈t,u〉, x〈v,w〉 be maximal biproducts of x in TB .
Since x ∈ R, both maximal biproducts x〈t,u〉, x〈v,w〉 are main biproducts and we will
denote them by xt,u, xv,w. Let x = x1x2 · · ·xm and x = x′1x

′
2 · · ·x′mx′m+1 · · ·x′m+k,

k � 0, be the representations of x as main biproducts in 〈t, u〉 and 〈v, w〉, respec-
tively. By the property (2) we have that

m− 1 = χ〈t,u〉(x1x2 · · ·xm) = χ〈v,w〉(x′1x
′
2 · · ·x′m+k) = m+ k − 1,
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which implies that k = 0 and that xi = x′i, for 1 � i � m. Therefore, the maximal
biproducts xt,u and xv,w are in fact the same biproduct. �

Bellow, for x ∈ R, we will denote by x = x1x2 · · ·xm the maximal main biprod-
uct of x in TB (if it is not stated otherwise).

Lemma 3.2. Let x ∈ R, let the maximal biproduct of x be generated by {t, u},
and let another biproduct of x be generated by {v, w}. Then v, w ∈ 〈t, u〉.

Proof. Let x = x1 · · ·xm be the maximal biproduct of x generated by {t, u}
and let x = x′1 · · ·x′n be another biproduct of x generated by {v, w}. By Proposi-
tion 2.3 we may put t = v. Both biproducts are equal and since x ∈ R, they are
main biproducts. By Lemma 3.1, n < m, i.e., m = n+ k, k � 1, so

x′1 · · ·x′n = x1 · · ·xnxn+1 · · ·xn+k.

Using this facts, we obtain that x′i = xi = t, for i ∈ {1, . . . , n− 1}. Clearly, x′n = w
and xi ∈ {t, u}, for i ∈ {n, . . . , n+ k}. Therefore, v, w ∈ 〈t, u〉. �

Proposition 3.2. Let x, y ∈ R and the maximal biproducts x = x1x2 · · ·xm,
y = y1y2 · · · yn have generating pairs {t, u}, {v, w}, respectively. Then xy ∈ R if
and only if (a) or (b), where

(a) y /∈ 〈t, u〉, and for any biproduct of x with a generating pair {t1, u1 }, if
t1, u1 ∈ 〈v, w〉, then t1 = u1 = x

(b) y ∈ 〈t, u〉 and t = u = x ∈ B.

Proof. Let xy ∈ R. There are two possible cases for y: 1) y /∈ 〈t, u〉 and
2) y ∈ 〈t, u〉.

Case 1). Since {v, w} is the generating pair for the biproduct y = y1y2 · · · yn,
and y /∈ 〈t, u〉, we should consider the cases when some of the biproducts of x
has a generating pair {t1, u1}, such that t1, u1 ∈ 〈v, w〉. Let x = z1z2 · · · zk

be such a biproduct of x. Then zi ∈ {t1, u1} ⊆ 〈v, w〉. The product xy =
(z1z2 · · · zk)(y1y2 · · · yn) will be a main biproduct only if k = 1, i.e., x = z1, and
z1 = v or z1 = w. Since x = z1 is generated by {t1, u1}, it follows that t1 = u1 = x.

Case 2). In this case xy has a biproduct with a generating pair {t, u}. xy is
a main biproduct, since xy ∈ R and, therefore m = 1, i.e., x = x1. The maximal
biproduct of x is generated by {t, u}, so t = u = x. Moreover, x ∈ B, because if
x /∈ B (for example x = ab, i.e., t = u = ab), then the biproduct of xy generated by
{a, b} can not be a main biproduct, that contradicts the assumption that xy ∈ R.

For the converse, let (a) or (b) hold. If (b) holds, then it is clear that xy ∈ R.
Let (a) holds and suppose xy /∈ R. From 1) we obtain that x ∈ 〈v, w〉. There-

fore, there is a biproduct of x with a generating pair {v, w}. By Lemma 3.2 it
follows that v, w ∈ 〈t, u〉, that contradicts the assumption that y /∈ 〈t, u〉. �

Now we define an operation ∗ on R as follows. Let x, y ∈ R, x = x1x2 · · ·xm,
y = y1y2 · · · yn and put

(3.2) x ∗ y =

{
xy, if xy ∈ R

x1x2 · · ·xmy1y2 · · · yn, if xy /∈ R.
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The operation ∗ is well-defined, i.e., R = (R, ∗) is a groupoid. Namely, let x, y ∈
R. If xy ∈ R, then x ∗ y is a uniquelly determined element of R. If xy /∈ R, then
z = x1x2 · · ·xmy1y2 · · · yn is a term of TB that is a main biproduct. Clearly, every
biproduct of any subterm of x1x2 · · ·xmy1y2 · · · yn is a main biproduct. Therefore,
by (3.1), z ∈ R. Since x1x2 · · ·xmy1y2 · · · yn as a maximal biproduct in TB is
unique (by Lemma 3.1), it follows that x ∗ y is uniquely determined element of R
in the case xy /∈ R. Thus, R = (R, ∗) is a groupoid.

By (3.2) it follows directly that:
1◦. If xy ∈ R, then x, y ∈ R & x ∗ y = xy (i.e., R satisfies ii) and iii)).
2◦. (∀x, y ∈ R) |x ∗ y| = |x| + |y|.
The following three properties of R (3◦–5◦) show that the groupoid R = (R, ∗)

is free in Bass with the free basis B.
3◦. R ∈ Bass.
Proof of 3◦. We have to show that every subgroupoid of R generated by two

elements is a subsemigroup of R.
For this purpose, let t, u ∈ R and 〈t, u〉∗ be the subgroupoid of R generated

by {t, u}. According to the definition of ∗, any x ∈ 〈t, u〉∗ is a maximal biproduct
with the generating pair {t, u}. Therefore, if x, y, z ∈ 〈t, u〉∗, then x = x1x2 · · ·xm,
y = y1y2 · · · yn, z = z1z2 · · · zp (xi, yj , zk ∈ {t, u}) and by (3.2):

(x ∗ y) ∗ z = x1x2 · · ·xmy1y2 · · · ynz1z2 · · · zp = x ∗ (y ∗ z),
i.e., the subgroupoid 〈t, u〉∗ is a subsemigroup of R. Hence, R ∈ Bass.

4◦. The set of primes in R coincides with B and generates R.
(An element a in a groupoid G = (G, ·) is said to be prime in G if and only if

a 	= xy, for any x, y ∈ G.)
Proof of 4◦. If b ∈ B, then by (3.2) b 	= x ∗ y, for all x, y ∈ R. Hence,

every b ∈ B is prime in R. To show that no element of R � B is prime in R,
let x ∈ TB � B be a term belonging to R. Then by (3.1), every biproduct of any
subterm of x is a main biproduct, and thus the maximal biproduct of x in TB is
a main biproduct. Therefore, x = x1x2 · · ·xm, where m � 2 (since x ∈ TB � B).
Thus, x = x1 ∗ (x2 · · ·xm), i.e., x is not prime in R.

Let Q be the subgroupoid of R generated by B, Q = 〈B〉∗. We will show
that R = Q. Clearly, Q ⊆ R. To show that R ⊆ Q, let x ∈ R. If x ∈ B, then
x ∈ 〈B〉∗ = Q, i.e., (x ∈ R & |x | = 1 ⇒ x ∈ Q).

Suppose that (x ∈ R & |x | � k ⇒ x ∈ Q) is true. If x ∈ R is such that |x | =
k + 1, then x = x1x2 in TB and |x1 |, |x2 | � k. By the inductive hypothesis we
have x1, x2 ∈ Q, and since Q is a groupoid, it follows that x = x1x2 = x1 ∗x2 ∈ Q.
Thus, R ⊆ Q. Therefore, R = Q = 〈B〉∗.

5◦. If G ∈ Bass and λ : B → G is a mapping, then there is a homomorphism
ψ : R → G that extends λ, i.e., ψ(b) = λ(b), for all b ∈ B.

Proof of 5◦. Let ϕ : TB → G be the homomorphism that extends λ. Denote
by ψ the restriction of ϕ on R (i.e., ψ = ϕ|R). It suffices to show that

(∀x, y ∈ R) ϕ(x ∗ y) = ϕ(x)ϕ(y).
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Let x, y ∈ R. If xy ∈ R, then ϕ(x ∗ y) = ϕ(xy) = ϕ(x)ϕ(y). If xy /∈ R (i.e.,
x = x1x2 · · ·xm, y = y1y2 · · · yn, where xi, yj ∈ {t, u} and m � 2) then using the
fact: (xi, yj ∈ {t, u} ⇒ ϕ(xi), ϕ(yj) ∈ {ϕ(t), ϕ(u)}) we have

ϕ(x ∗ y) = ϕ(x1 · · ·xmy1 · · · yn) = ϕ(x1) · · ·ϕ(xm)ϕ(y1) · · ·ϕ(yn)

= [G ∈ Bass] = ϕ(x1 · · ·xm)ϕ(y1 · · · yn) = ϕ(x)ϕ(y).

So, the conditions i)–iv) at the beginning of this section are fulfilled and thus
we proved the following

Theorem 3.1. The groupoid R = (R, ∗), defined by (3.1) and (3.2) is a canon-
ical biassociative groupoid with a free basis B.
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[3] G. Čupona, N. Celakoski, S. Ilić, On Monoassociative groupoids, Mat. Bilten 26 (2002), 5–16
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