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VECTOR VALUED HYPERSTRUCTURES

V. MIOVSKA1, V. CELAKOSKA-JORDANOVA1, AND B. DAVVAZ2

Abstract. Vector valued hyperstructures, i.e., (n, m)-hyperstructures, where n =
m + k, k ≥ 1, as a generalization of vector valued structures and n-ary hyperstruc-
tures are introduced and supported by many examples. We have presented some
initial properties about (n, m)-hypersemigroups and (n, m)-hypergroups. Moreover,
by properly defining regular and strongly regular binary relations, from vector val-
ued hypersemigroups (hypergroups) we obtain "ordinary" vector valued semigroups
(groups) on quotients.

1. Introduction and Basic Definitions

An (n,m)-groupoid is a nonempty set G with one vector valued operation, i.e., an
operation [ ] : Gn → Gm, where n ≥ m. Such a structure (G, [ ]) is called a vector
valued groupoid as well. Vector valued groupoids were investigated in [15] and other
special vector valued structures such as (n,m)-semigroups and (n,m)-groups were
investigated in [1,3,4,10–13,16]. A good expository paper on vector valued structures
is [2]. Compared with the papers devoted to n-ary structures, the number of the
papers devoted to vector valued structures is smaller. Having in mind some recent
works on n-ary hyperstructures such as [6–9], we define the notion of vector valued
hypergroupoid and present some initial concepts, examples and results.

Let H be a nonempty set and let n, m be positive integers such that n ≥ m. We
denote by P∗(H) the set of all nonempty subsets of H and by Hn the n-th Cartesian
product of H, H × · · · ×H, where H appears n times.

Key words and phrases. (n, m)-hyperoperation, (n, m)-hypergroupoid, (n, m)-hypersemigroup,
(n, m)-hyperquasigroup, (n, m)-hypergroup, regular relation, strongly regular relation.
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Definition 1.1. Let [ ] be a mapping [ ] : Hn → (P∗(H))m from the n-th Cartesian
product of H to the m-th Cartesian product of P∗(H). Then [ ] is called an (n,m)-
hyperoperation on H or, if it is not necessary to emphasize the integers n and m, then
we will say that [ ] is a vector valued hyperoperation instead of (n,m)-hyperoperation.

In this sense, a (2, 1)-hyperoperation on H means a binary hyperoperation on H
and an (n, 1)-hyperoperation means an n-ary hyperoperation on H.
Definition 1.2. A sequence of m n-ary hyperoperations [ ]s : Hn → P∗(H), s ∈
{1, 2, . . . ,m}, can be associated to [ ] by putting
(1.1) [a1 . . . an]s = Bs ⇔ [a1 . . . an] = (B1, . . . , Bm),
for all a1, . . . , an ∈ H. Then, we call [ ]s the s-th component hyperoperation of [ ] and
write [ ] = ([ ]1, . . . , [ ]m).

Note that there is a unique (n,m)-hyperoperation on H whose component hyper-
operations are [ ]s.

An (n,m)-hyperoperation [ ] on H is extended to subsets A1, A2, . . . , An of H in a
natural way, i.e.,

[A1A2 . . . An] = ([A1A2 . . . An]1, [A1A2 . . . An]2, . . . , [A1A2 . . . An]m),
where [A1A2 . . . An]s = ∪{[an1 ]s | ai ∈ Ai, i = 1, 2, . . . , n} and s = 1, 2, . . . ,m.

Note that Cp
1 ⊆ Bp

1 if and only if Ci ⊆ Bi, for i = 1, . . . , p, and, xp1 ∈ Cp
1 if and only

if xi ∈ Ci for i = 1, . . . , p.
Definition 1.3. An algebraic structure H = (H, [ ]), where [ ] is an (n,m)-ary
hyperoperation defined on a nonempty set H, is called an (n,m)-hypergroupoid or
vector valued hypergroupoid. If [ ] = ([ ]1, . . . , [ ]m), we denote by (H; [ ]1, . . . , [ ]m) the
component hypergroupoid of H and (H, [ ]j) is the j-th component n-ary hypergroupoid
of H .

Identifying the set {x} with the element x, any (n,m)-groupoid is an (n,m)-
hypergroupoid.

Throughout the paper, we use the following simplified notation. The elements
of Hn, i.e., the sequences (x1, x2, . . . , xn) will be denoted by x1x2 . . . xn or xn1 . The
symbol xji will denote the sequence xixi+1 . . . xj of elements of H when i ≤ j and the
empty symbol when i > j. If xi+1 = xi+2 = · · · = xi+r = x, then the sequence xi+ri+1

is denoted by
(r)
x . Under this convention the sequence x1 . . . xi x . . . x︸ ︷︷ ︸

r

xi+r+1 . . . xn will

be denoted by xi1
(r)
x xni+r+1.

In what follows we will assume that n and m are such that n > m, i.e., n = m+ k,
for k ≥ 1.
Definition 1.4. An (n,m)-hyperoperation is said to be (i, j)-associative if for all
x1, . . . , xn+k ∈ H

[xi1[xi+ni+1 ]xn+k
i+n+1] = [xj1[xj+nj+1 ]xn+k

j+n+1],
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and weakly (i, j)-associative if for all x1, . . . , xn+k ∈ H

[xi1[xi+ni+1 ]xn+k
i+n+1]s ∩ [xj1[xj+nj+1 ]xn+k

j+n+1]s 6= ∅,

holds for fixed i and j, where 1 ≤ i < j ≤ n and for every s ∈ {1, 2, . . . ,m}.
If the above conditions are satisfied for all i, j ∈ {1, 2, . . . , n}, then we say that the

operation [ ] is associative (weakly associative, respectively). An (n,m)-hypergroupoid
with an associative operation (weakly associative operation) is called an (n,m)-hyper-
semigroup (weak (n,m)-hypersemigroup).

Definition 1.5. An (n,m)-hypergroupoid (H, [ ]) is partially i-cancellative if there
exists a sequence ak1 ∈ Hk such that

[ai1xm1 aki+1] = [ai1ym1 aki+1] ⇒ xm1 = ym1 ,

for all xm1 , ym1 ∈ Hm and some i ∈ {0, 1, . . . , k}. The sequence ak1 is called i-cancellable.
If this implication holds for all i = 0, 1, . . . , k, then we say that (H, [ ]) is partially
cancellative and the sequence ak1 is cancellable. An (n,m)-hypergroupoid in which
this implication holds for some i ∈ {0, 1, . . . , k} and all sequences ak1 ∈ Hk is said
to be i-cancellative. For i = 0 (i = k) we say that (H, [ ]) is right cancellative (left
cancellative). If (H, [ ]) is i-cancellative for every i = 0, 1, . . . , k, then it is said to be
cancellative. An (n,m)-hypergroupoid is strongly i-cancellative if for all ak1 ∈ Hk the
following implication holds:

[ai1Xm
1 a

k
i+1] = [ai1Y m

1 aki+1] ⇒ Xm
1 = Y m

1 ,

where Xi, Yi ⊆ H and some i ∈ {0, 1, . . . , k}. If this implication holds for all i ∈
{0, 1, . . . , k} we say that (H, [ ]) is strongly cancellative and the sequence ak1 is strongly
cancellable. If there exists a sequence ak1 ∈ Hk such that the above implication holds,
then we say that the (n,m)-hypergroupoid is partially strongly cancellative.

Remark 1.1. The definition of partially i-cancellative (partially cancellative) (n,m)-
hypergroupoid form = 1 corresponds to the definition of weakly i-cancellative (weakly
cancellative) n-ary hypergroupoid. Note that, if an (n,m)-hypergroupoid is strongly
i-cancellative (strongly cancellative), then it is partially i-cancellative (partially can-
cellative).

Definition 1.6. Let (H, [ ]) be an (n,m)-hypergroupoid. A sequence ek1 ∈ Hk is
called an i-neutral polyad if

[xi1ek1xmi+1] = ({x1}, {x2} . . . , {xm}).

We write this identity in the form [xi1ek1xmi+1] = xm1 , for all xm1 ∈ Hm. A 0-neutral
polyad is also called left neutral and an m-neutral polyad is also called right neutral.
A polyad that is i-neutral for each i ∈ {0, 1, . . . ,m} is called a neutral polyad.

If there exits e ∈ H such that for any sequence xm1 ∈ Hm the relation

xm1 ∈ [xi1
(k)
e xmi+1]
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holds for all i = 0, . . . ,m, then we say that e is a weak neutral element in H . If

(1.2) [xi1
(k)
e xmi+1] = ({x1}, {x2} . . . , {xm})

holds for any xm1 ∈ Hm and fixed i, where i ∈ {0, 1, . . . ,m}, then we say that e is i-
neutral element in H and it is called a neutral element in H if the equation (1.2) holds
for every i = 0, 1, . . . ,m. We write the identity (1.2) in the form [xi1

(k)
e xmi+1] = xm1 .

Definition 1.7. An (n,m)-hypergroupoid (H, [ ]) is called an (n,m)-hyperquasigroup
if for every an1 ∈ Hn there exists xm1 ∈ Hm such that
(1.3) ank+1 ∈ [ai1xm1 aki+1],
for every i = 0, 1, . . . , k.

Definition 1.8. An (n,m)-hyperquasigroup that is an (n,m)-hypersemigroup (weak
(n,m)-hypersemigroup) is called (n,m)-hypergroup (weak (n,m)-hypergroup).

Definition 1.9. An (n,m)-hypergroupoid (H, [ ]) is called (i, j)-commutative if the
equality [an1 ] = [ai1aja

j
i+2aia

n
j+2] holds for fixed i, j such that 0 ≤ i < j ≤ n − 1

and for every sequence an1 ∈ Hn. If this equation holds for every i, j and for every
sequence an1 ∈ Hn, then (H, [ ]) is called commutative (n,m)-hypergroupoid. In
that case [an1 ] = [aσ(n)

σ(1) ], where σ ∈ Sn and for every sequence an1 ∈ Hn. An (n,m)-
hypergroupoid (H, [ ]) is called weakly commutative if ⋂

σ∈Sn
[aσ(n)
σ(1) ]s 6= ∅ for every

sequence an1 ∈ Hn and every s = 1, 2, . . . ,m.

Definition 1.10. Let (H, [ ]) and (H ′, [ ]′) be (n,m)-hypergroupoids. A mapping
ϕ : H → H ′ is:

a) a strong homomorphism if and only if ϕ([an1 ]s) = [ϕ(a1) . . . ϕ(an)]′s;
b) an inclusion homomorphism if and only if ϕ([an1 ]s) ⊆ [ϕ(a1) . . . ϕ(an)]′s;
c) a weak homomorphism if and only if ϕ([an1 ]s)∩ [ϕ(a1) . . . ϕ(an)]′s 6= ∅, for every
s = 1, 2, . . . , n.

If ϕ is a bijective mapping and a strong homomorphism, then it is called an iso-
morphism, and it is called an automorphism if ϕ is defined on the same (n,m)-
hypergroupoid.

2. Examples

Example 2.1. Let H be the set Z of integers and let [ ] be defined as follows:
[x4

1] = ({x1, x3}, {x2, x4}). By a direct verification one can show that the compo-
nent operations are:

[[x4
1]x6

5]1 = [{x1, x3}{x2, x4}x5x6}]1
= [x1x2x5x6]1 ∪ [x1x4x5x6]1 ∪ [x3x2x5x6]1 ∪ [x3x4x5x6]1
= {x1, x5} ∪ {x1, x5} ∪ {x3, x5} ∪ {x3, x5} = {x1, x3, x5},

[[x4
1]x6

5]2 = [{x1, x3}{x2, x4}x5x6}]2
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= [x1x2x5x6]2 ∪ [x1x4x5x6]2 ∪ [x3x2x5x6]2 ∪ [x3x4x5x6]2
= {x2, x6} ∪ {x4, x6} ∪ {x2, x6} ∪ {x4, x6} = {x2, x4, x6}.

So,
[[x4

1]x6
5] = ({x1, x3, x5}, {x2, x4, x6}),

[x1[x5
2]x6]1 = [x1{x2, x4}{x3, x5}x6]1

= [x1x2x3x6]1 ∪ [x1x2x5x6]1 ∪ [x1x4x3x6]1 ∪ [x1x4x5x6]1
= {x1, x3} ∪ {x1, x5} = {x1, x3, x5},

[x1[x5
2]x6]2 = [x1{x2, x4}{x3, x5}x6]2

= [x1x2x3x6]2 ∪ [x1x2x5x6]2 ∪ [x1x4x3x6]2 ∪ [x1x4x5x6]2
= {x2, x6} ∪ {x4, x6} = {x2, x4, x6}.

So,
[x1[x5

2]x6] = ({x1, x3, x5}, {x2, x4, x6}),
[x2

1[x6
3]]1 = [x1x2{x3, x5}{x4x6}]1

= [x1x2x3x4]1 ∪ [x1x2x3x6]1 ∪ [x1x2x5x4]1 ∪ [x1x2x5x6]1
= {x1, x3} ∪ {x1, x3} ∪ {x1, x5} ∪ {x1, x5} = {x1, x3, x5},

[x2
1[x6

3]]2 = [x1x2{x3, x5}{x4x6}]2
= [x1x2x3x4]2 ∪ [x1x2x3x6]2 ∪ [x1x2x5x4]2 ∪ [x1x2x5x6]2
= {x2, x4} ∪ {x2, x6} ∪ {x2, x4} ∪ {x2, x6} = {x2, x4, x6}.

So, [x2
1[x6

3]] = ({x1, x3, x5}, {x2, x4, x6}) and, obviously, [[x4
1]x6

5] = [x1[x5
2]x6] = [x2

1[x6
3]],

i.e., (H, [ ]) is a (4, 2)-hypersemigroup.

Remark 2.1. Note that the set H with any of the component 4-ary hyperoperations
does not have to be a 4-hypersemigroup.

Remark 2.2. If (H, [ ]1) and (H, [ ]2) are, for example, ternary hypersemigroups, then
(H, [ ]), where [ ] = ([ ]1, [ ]2), does not necessarily have to be a (3, 2)-hypersemigroup.
For instance, let H = {a, b, c} and [ ]1 be the ternary hyperoperation defined as in
Example 2.4 in [9] and [ ]2 be the ternary hyperoperation defined as in Example
4 in [7]. Both (H, [ ]1) and (H, [ ]2) are ternary hypersemigroups as it is shown in
[9] and [7]. However, (H; [ ]1, [ ]2) is not a (3, 2)-hypersemigroup, since [[baa]a]1 =
[[baa]1[baa]2a]1 = [bba]1 = {a, c} 6= [b[aaa]]1 = [b[aaa]1[aaa]2]1 = [baa]1 = b.

The next example presents a weak (4, 2)-hypersemigroup that is not a (4, 2)-hyper-
semigroup.

Example 2.2. Let H be the set Z of integers, (Z,+) be the additive group of integers
and let [ ] be defined as follows:

[x4
1] = ({x1, x1 + x3}, {x2, x2 + x4}).
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By a direct verification one can show that the component operations are:
[[x4

1]x6
5]1 =[{x1, x1 + x3}{x2, x2 + x4}x5x6}]1

=[x1x2x5x6]1 ∪ [x1(x2 + x4)x5x6]1
∪ [(x1 + x3)x2x5x6]1 ∪ [(x1 + x3)(x2 + x4)x5x6]1

={x1, x1 + x5} ∪ {x1 + x3, x1 + x3 + x5}
={x1, x1 + x3, x1 + x5, x1 + x3 + x5},

[[x4
1]x6

5]2 =[{x1, x1 + x3}{x2, x2 + x4}x5x6}]2
=[x1x2x5x6]2 ∪ [x1(x2 + x4)x5x6]2
∪ [(x1 + x3)x2x5x6]2 ∪ [(x1 + x3)(x2 + x4)x5x6]2

={x2, x2 + x6} ∪ {x2 + x4, x2 + x4 + x6}
={x2, x2 + x4, x2 + x6, x2 + x4 + x6}.

From here we obtain that
[[x4

1]x6
5] = ({x1, x1 + x3, x1 + x5, x1 + x3 + x5}, {x2, x2 + x4, x2 + x6, x2 + x4 + x6}).

In a similar way as in the previous step, one can show that
[x1[x5

2]x6] = ({x1, x1 + x3, x1 + x3 + x5}, {x2, x2 + x4, x2 + x6, x2 + x4 + x6})
and that

[x2
1[x6

3] = ({x1, x1 + x3, x1 + x3 + x5}, {x2, x2 + x4, x2 + x4 + x6}).
Note that [[x4

1]x6
5] 6= [x1[x5

2]x6] and therefore (H, [ ]) is not a (4, 2)-hypersemigroup.
However, for i = 1, 2, [[x4

1]x6
5]i∩ [x1[x5

2]x6]i 6= ∅, [[x4
1]x6

5]i∩ [x2
1[x6

3]]i 6= ∅ and [x1[x5
2]x6]i∩

[x2
1[x6

3]]i 6= ∅. Thus (H, [ ]) is a weak (4, 2)-hypersemigroup.

Example 2.3. Let H = Z3 and let [ ] be a (3, 2)-hyperoperation on H defined by
[x3

1] = (max{x1, x3}, x2). Then (H, [ ]) is partially left cancellative, since there is an
element 0 ∈ Z3 such that [0x2

1] = [0y2
1] ⇒ (max{0, x2}, x1) = (max{0, y2}, y1) ⇒

x1 = y1, x2 = y2. It can be shown in a similar way that (H, [ ]) is partially right
cancellative as well.

Example 2.4. The (4, 2)-hypersemigroup defined in the Example 2.1 is a cancellative
(4, 2)-hypergroupoid. Namely, let a2

1 ∈ H2. Then
[a2

1x
2
1] = [a2

1y
2
1] ⇒ ({a1, x1}, {a2, x2}) = ({a1, y1}, {a2, y2})
⇒ {a1, x1} = {a1, y1}, {a2, x2} = {a2, y2}
⇒ x1 = y1, x2 = y2

⇒ x2
1 = y2

1,

[x1a
2
1x2] = [y1a

2
1y2] ⇒ ({x1, a2}, {a1, x2}) = ({y1, a2}, {a1, y2})

⇒ {x1, a2} = {y1, a2}, {a1, x2} = {a1, y2}
⇒ x1 = y1, x2 = y2
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⇒ x2
1 = y2

1.

In a similar way one can show that [x2
1a

2
1] = [y2

1a
2
1] ⇒ x2

1 = y2
1.

Example 2.5. Let H = Z, (Z,+), be the additive group of integers and [ ] be a (4, 2)-
hyperoperation defined by [x4

1] = (x1 +x3, x2 +x4). It is strongly cancellative. Namely,
let [x1x2AB] = [x1x2CD]. Then, (x1 + A, x2 + B) = (x1 + C, x2 + D) implies that
A = C, B = D. If [x1ABx4] = [x1CDx4], then (x1+B, A+x4) = (x1+D, C+x4), and
thus, B = D, A = C. If [ABx3x4] = [CDx3x4], then (A+x3, B+x4) = (C+x3, D+x4),
and thus, A = C, B = D.

Note that if (H, [ ]) is strongly cancellative, then it is cancellative as well. The
converse is not true. For instance, if (H, [ ]) is defined as in Example 2.4 then (H, [ ])
is cancellative but it is not strongly cancellative, since [12{1, 2}{2, 4}] = [1224] 6⇒
{1, 2} = {2} and {2, 4} = {4}.

Example 2.6. Let H = Z4, (Z4,+), be the additive group of integers modulo 4 and [ ]
be a (4, 2)-hyperoperation on H defined by

[x4
1] = ({x1 + x3,max{x1, x3}}, {x2 + x4,max{x2, x4}}).

Since [00x3x4] = ({x3, x3}, {x4, x4}) = (x3, x4), [x100x4] = ({x1, x1}, {x4, x4}) =
(x1, x4) and [x1x200] = ({x1, x1}, {x2, x2}) = (x1, x2), it follows that 0 is a neutral
element in H.

Example 2.7. Let H = Z, where (Z,+) is the additive group of integers, and [ ] be a
(4, 2)-hyperoperation on H defined by

[x4
1] = ({x1 + x3, x3}, {x2 + x4, x4}).

Since [00x3x4] = (x3, x4) 3 (x3, x4), [x100x4] = ({x1, 0}, x4) 3 (x1, x4) and [x1x200] =
({x1, 0}, {x2, 0}) 3 (x1, x2), it follows that 0 is a weak neutral element in H.

Example 2.8. Let H = Z2 and [ ] be a (3,2)-hyperoperation on H defined by [x3
1] =

({x1, x2}, {x2, x3}). By a direct verification for 8 sequences from elements of H, one
can show that the relation (1.3) has a solution for every (x, y) ∈ H2 and thus it is (3,2)-
hyperquasigroup. Since it is a hypersemigroup as well (it can be easily verified that
[[x3

1]x4] = ({x1, x2, x3}, {x2, x3, x4}) = [x1[x4
2]]) it follows that H is a (3,2)-hypergroup.

Example 2.9. Let H = Z and [ ] is a (4, 2)-hyperoperation on H defined by [x4
1] =

({x1, x3}, {x2, x4}). Clearly, (H, [ ]) is (0, 2)-commutative and (1, 3)-commutative
(4, 2)-hypergroupoid that is not (0, 1)-commutative.

Example 2.10. Let H = Z, where (Z,+, ·) is the ring of integers and [ ], be a (3, 2)-
hyperoperation on H defined by

[x3
1] = ({x1 + x2 + x3, 0}, {x1x2x3, 1}).

Clearly, (H, [ ]) is a commutative (3, 2)-hypergroupoid.
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Example 2.11. Let H = Z, where (Z,+, ·) is the ring of integers, and [ ] be a (3, 2)-
hyperoperation on H defined by [x3

1] = ({x1 + x2 + x3, x1}, {x1x2x3, x2}). Then
[x1x2x3]1 = {x1 + x2 + x3, x1} = [x1x3x2]1,
[x2x1x3]1 = {x1 + x2 + x3, x2} = [x2x3x1]1,
[x3x1x2]1 = {x1 + x2 + x3, x3} = [x3x2x1]1,

and thus ⋂
σ∈Sn

[xσ(3)
σ(1)]1 = ⋂3

j=1{x1 + x2 + x3, xj} = {x1 + x2 + x3} 6= ∅.
In a similar way, we obtain that

[x1x2x3]2 = {x1x2x3, x2} = [x3x2x1]2,
[x2x1x3]2 = {x1x2x3, x1} = [x3x1x2]2,
[x1x3x2]2 = {x1x2x3, x3} = [x2x3x1]2,

and thus ⋂
σ∈Sn

[xσ(3)
σ(1)]2 = ⋂3

j=1{x1x2x3, xj} = {x1x2x3} 6= ∅.
Therefore, H is a weakly commutative (3, 2)-hypergroupoid.

3. Some Results on (n,m)-hyperstructures

Proposition 3.1. Let (H, [ ]) be an (n,m)-hypersemigroup. The following conditions
are equivalent:

(i) (H, [ ]) is strongly cancellative;
(ii) (H, [ ]) is strongly left and strongly right cancellative;
(iii) (H, [ ]) is strongly i-cancellative for some 0 < i < k.

Proof. Implications (i)⇒(ii) and (i)⇒(iii) are obvious.
(ii)⇒(i) Let (H, [ ]) be an i-cancellative hypersemigroup for i = 0 and i = k. If

[aj1xm1 akj+1] = [aj1ym1 akj+1],

for 1 ≤ j ≤ k − 1, then for all bk1 ∈ Hk we have

[bk−j1 [aj1xm1 akj+1]bkk−j+1] = [bk−j1 [aj1ym1 akj+1]bkk−j+1].
From the associativity it follows that

[bk−j1 aj1[xm1 akj+1b
k
k−j+1]] = [bk−j1 aj1[ym1 akj+1b

k
k−j+1]].

From the strong cancellativity it follows that
[xm1 akj+1b

k
k−j+1] = [ym1 akj+1b

k
k−j+1],

which implies that xm1 = ym1 .
(iii)⇒(i) Let (H, [ ]) be strongly i-cancellative hypersemigroup for some 0 < i < k.

First we will show that if (H, [ ]) is strongly i-cancellative, then (H, [ ]) is strongly
(i+ 1)-cancellative hypersemigroup.

We have
[ai+1

1 xm1 a
k
i+2] = [ai+1

1 ym1 a
k
i+2]



VECTOR VALUED HYPERSTRUCTURES 267

⇒ [bi−1
1 [ai+1

1 xm1 a
k
i+2]bki ] = [bi−1

1 [ai+1
1 ym1 a

k
i+2]bki ]

⇒ [bi−1
1 a1[ai+1

2 xm1 a
k
i+2bi]bki+] = [bi−1

1 a1[ai+1
2 ym1 a

k
i+2bi]bki+1]

⇒ [ai+1
2 xm1 a

k
i+2bi] = [ai+1

2 ym1 a
k
i+2bi].

From the strong i-cancellativity it follows that xm1 = ym1 . Now, we will show that if
(H, [ ]) is strongly i-cancellative, then (H, [ ]) is strongly (i − 1)-cancellative hyper-
semigroup

[ai−1
1 xm1 a

k
i ] = [ai−1

1 ym1 a
k
i ]

⇒ [bi+1
1 [ai−1

1 xm1 a
k
i ]bki+2] = [bi+1

1 [ai−1
1 ym1 a

k
i ]bki+2]

⇒ [bi1[bi+1a
i−1
1 xm1 a

k−1
i ]akbki+2] = [bi1[bi+1a

i−1
1 ym1 a

k−1
i ]akbki+2]

⇒ [bi+1a
i−1
1 xm1 a

k−1
i ] = [bi+1a

i−1
1 ym1 a

k−1
i ]

⇒ xm1 = ym1 .

Hence, (H, [ ]) is strongly cancellative hypersemigroup. �

Proposition 3.2. If for some j such that 1 ≤ j ≤ i − 1 the (n,m)-hypergroupoid
(H, [ ]) is (i− 1, i + j − 1)-associative and partially strongly (i + j − 1)-cancellative,
then it is (i− j − 1, i− 1)-associative.

Proof. Let (H, [ ]) be an (n,m)-hypergroupoid that is (i− 1, i+ j− 1)-associative and
partially strongly (i+ j − 1)-cancellative. Then it follows

[ai+j−1
1 [xi−j−1

1 [xn+i−j−1
i−j ]xn+k

n+i−j]aki+j]
=[ai−1

1 [ai+j−1
i xi−j−1

1 [xn+i−j−1
i−j ]xn+k−j

n+i−j ]xn+k
n+k−j+1a

k
i+j]

=[ai−1
1 [ai+j−1

i xi−j−1
1 xi−1

i−j [xn+i−1
i ]xn+k−j

n+i ]xn+k
n+k−j+1a

k
i+j]

=[ai−1
1 ai+j−1

i [xi−1
1 [xn+i−1

i ]xn+k−j
n+i xn+k

n+k−j+1]aki+j]
=[ai+j−1

1 [xi−1
1 [xn+i−1

i ]xn+k
n+i ]aki+j].

Using the fact that (H, [ ]) is partially strongly (i+ j − 1)-cancellative we obtain that
[xi−j−1

1 [xn+i−j−1
i−j ]xn+k

n+i−j] = [xi−1
1 [xn+i−1

i ]xn+k
n+i ],

i.e., (i− j − 1, i− 1)-associativity holds in (H, [ ]) for 1 ≤ j ≤ i− 1. �

Proposition 3.3. If a partially strongly (i − 1)-cancellative (i ≥ 1) (n,m)-hyper-
groupoid (H, [ ]) is (i− 1, i+ j − 1)-associative for some j ≥ 1 and 2j ≤ k− i, then it
is (i+ j − 1, i+ 2j − 1)-associative.

Proof. Since (H, [ ]) is partially strongly (i− 1)-cancellative, it follows that there is a
sequence ak1 ∈ Hk such that [ai−1

1 xm1 a
k
i ] = [ai−1

1 ym1 a
k
i ] ⇒ xm1 = ym1 . Then, using the

(i− 1, i+ j − 1)-associativity for some j ≥ 1 and 2j ≤ k − i, and we obtain that
[ai−1

1 [xi+j−1
1 [xi+j+n+1

i+j ]xn+k
i+j+n]aki ]

=[ai−1
1 [xi+2j−1

1 [xi+2j+n−1
i+2j ]xn+k

i+2j+n]aki ]
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=[ai−1
1 [xj1[xi+j−1

j+1 [xi+j+n−1
i+j ]xn+k

i+j+n]ai+j−1
i ]aki+j]

=[ai−1
1 xj1[xi+2j−1

j+1 [xi+2j+n−1
i+2j ]xn+k

i+2j+na
i+j−1
i ]aki+j]

=[ai−1
1 [xj1xi+2j−1

j+1 [xi+2j+n−1
i+2j ]xn+k

i+2j+n]aki ]
=[ai−1

1 [xi+2j−1
1 [xi+2j+n−1

i+2j ]xn+k
i+2j+n]aki ].

The (n,m)-hypergroupoid (H, [ ]) is partially strongly (i−1)-cancellative and therefore
[[xi+j+n+1

i+j ]xn+k
i+j+n] = [xi+2j−1

1 [xi+2j+n−1
i+2j ]xn+k

i+2j+n],
i.e., (H, [ ]) is (i+ j − 1, i+ 2j − 1)-associative. �

Proposition 3.4. Let (H, [ ]) be an (n,m)-hypersemigroup and let e be a neutral
element in H. Then the following conditions are equivalent:

(i) the sequence
(k)
e is strongly cancellable;

(ii) the sequence
(k)
e is strongly i-cancellable for i = 0 and i = k;

(iii) The sequence
(k)
e is strongly i-cancellable for some 0 < i < k.

Proof. The proof is obvious from the proof of the Proposition 3.1. �

Proposition 3.5. Let (H, [ ]) be an (i, i + j)-associative (n,m)-hypergroupoid for
1 ≤ j ≤ i. If there exists a sequence ek1 ∈ Hk such that the equality [ei+j1 xm1 e

k
i+j+1] = xm1

holds for every xm1 ∈ Hm, then (H, [ ]) is an (i− j, i)-associative (n,m)-hypergroupoid.

Proof. Using the equation given in the supposition we obtain that
[xi−j1 [xi−j+m+k

i−j+1 ]xm+2k
i−j+m+k+1] = [ei+j1 [xi−j1 [xi−j+m+k

i−j+1 ]xm+2k
i−j+m+k+1]eki+j+1].

Applying the (i, i+ j)-associativity twice and using the given equation in the last step,
one obtains that

[ei+j1 [xi−j1 [xi−j+m+k
i−j+1 ]xm+2k

i−j+m+k+1]eki+j+1]
=[ei1[x

i−j
1 [xi−j+m+k

i−j+1 ]xm+2k−j
i−j+m+k+1]xm+2k

m+2k−j+1e
k
i+j+1]

=[ei1[e
j
i+1x

i
1[xi+m+k

i+1 ]xm+2k−j
i+m+k+1]xm+2k

m+2k−j+1e
k
i+j+1]

=[ei+j1 [xi1[xi+m+k
i+1 ]xm+2k

i+m+k+1]eki+j+1]
=[xi1[xi+m+k

i+1 ]xm+2k
i+m+k+1].

Thus, (H, [ ]) is an (i− j, i)-associative hypergroupoid for 1 ≤ j ≤ i. �

Proposition 3.6. Let (H, [ ]) be an (i, i + j)-associative (n,m)-hypergroupoid for
j ≥ 1. If there exists a sequence ek1 ∈ Hk such that the equality [ei1xm1 eki+1] = xm1 holds
for every xm1 ∈ Hm and if i + 2j ≤ k, then (H, [ ]) is an (i + j, i + 2j)-associative
(n,m)-hypergroupoid.

Proof. Using the equation given in the supposition we obtain that
[xi+j1 [xi+j+m+k

i+j+1 ]xm+2k
i+j+m+k+1] = [ei1[x

i+j
1 [xi+j+m+k

i+j+1 ]xm+2k
i+j+m+k+1]eki+1].
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Applying the (i, i+ j)-associativity three times and using the given equation in the
last step, one obtains that

[ei1[x
i+j
1 [xi+j+m+k

i+j+1 ]xm+2k
i+j+m+k+1]eki+1]

=[ei1x
j
1[xi+jj+1[x

i+j+m+k
i+j+1 ]xm+2k

i+j+m+k+1e
i+j
i+1]eki+j+1]

=[ei1x
j
1[xi+2j

j+1 [xi+2j+m+k
i+2j+1 ]xm+2k

i+2j+m+k+1e
i+j
i+1]eki+j+1]

=[ei1[x
i+2j
1 [xi+2j+m+k

i+2j+1 ]xm+2k
i+2j+m+k+1]eki+1]

=[xi+2j
1 [xi+2j+m+k

i+2j+1 ]xm+2k
i+2j+m+k+1].

Hence, (H, [ ]) is an (i + j, i + 2j)-associative hypergroupoid for i + 2j ≤ k and
j ≥ 1. �

Proposition 3.7. Let (H, [ ]) be an (n,m)-hypersemigroup with an m-neutral element
e that satisfies the identity [exm1

(k−1)
e ] = xm1 . Then

a) [
(i)
e xm1

(k−i)
e ] = xm1 for 2 ≤ i ≤ k;

b) e is a neutral element.

Proof. a) First we will prove that [
(2)
e xm1

(k−2)
e ] = xm1 . Namely:

[
(2)
e xm1

(k−2)
e ] =[[

(2)
e xm1

(k−2)
e ]

(k)
e ] = [e[exm1

(k−2)
e e]

(k−1)
e ]

=[e[exm1
(k−1)
e ]

(k−1)
e ] = [exm1

(k−1)
e ] = xm1 .

Iterating this procedure for every 3 ≤ i ≤ k, using the condition and every result
obtained in the previous step, we obtain that

[
(i)
e xm1

(k−i)
e ] =[[

(i)
e xm1

(k−i)
e ]

(k)
e ] = [

(i−1)
e [exm1

(k−1)
e ]

(k−i+1)
e ]

=[
(i−1)
e xm1

(k−i+1)
e ] = xm1 .

b) The proof follows from the supposition and a suitable application of a). Namely,
[x1

(k)
e xm2 ] = [[x1

(k)
e xm2 ]

(k)
e ] = [x1[

(k)
e xm2 e]

(k−1)
e ] = [x1x

m
2 e

(k−1)
e ] = [xm1

(k)
e ] = xm1 . �

The next proposition is symmetrical to Proposition 3.7.

Proposition 3.8. Let (H, [ ]) be an (n,m)-hypersemigroup with a 0-neutral element
e that satisfies the identity [

(k−1)
e xm1 e] = xm1 . Then

a) [
(i)
e xm1

(k−i)
e ] = xm1 for 2 ≤ i ≤ k;

b) e is a neutral element.

Proposition 3.9. If (H, [ ]) is an (m + k,m)-hypergroupoid such that k < m and
(H, [ ]) has a neutral element e, then |H | = 1.
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Proof. Let x ∈ H be arbitrarily chosen element. Then, [
(k)
e

(m−k)
x

(k)
e ] =

(m−k)
x

(k)
e and

[
(k)
e

(m−k)
x

(k)
e ] =

(k)
e

(m−k)
x , which implies that x = e, i.e., |H | = 1. �

Theorem 3.1. An (n,m)-hypersemigroup (H, [ ]) is an (n,m)-hypergroup if and only
if the relation (1.3) holds for

a) i = 0 and i = k (i.e., ank+1 ∈ [xm1 ak1] and ank+1 ∈ [ak1xm1 ], for all an1 ∈ Hn);
b) some i, 1 ≤ i < k − 1.

Proof. The direct statements are obvious.
a)⇒(1.3) For the converse, let the relation (1.3) holds for i = 0 and i = k. Then for

ak1 ∈ Hk and bm1 ∈ Hm, there is an xm1 ∈ Hm such that bm1 ∈ [xm1 ak1] and for ak1 ∈ Hk

and xm1 ∈ Hm, there is an ym1 such that xm1 ∈ [ak1ym1 ]. From here we obtain that

bm1 ∈ [[ak1ym1 ]ak1] = [ai1[aki+1y
m
1 a

i
1]aki+1],

for 1 ≤ i ≤ k − 1, so the relation (1.3) holds for every i, i.e., (H, [ ]) is an (n,m)-
hypergroup.

b)⇒(1.3) Let the relation (1.3) holds for some i, 1 ≤ i < k − 1. Then, for ak1 ∈ Hk

and bm1 ∈ Hm, there is xm1 ∈ Hm such that bm1 ∈ [ai1xm1 aki+1]. For (k)
ai+1∈ Hk and

xm1 ∈ Hm, there is ym1 such that xm1 ∈ [ (i)
ai+1 y

m
1

(k−i)
ai+1]. Then

bm1 ∈ [ai1[
(i)
ai+1 y

m
1

(k−i)
ai+1]aki+1] = [ai+1

1 [(i−1)
ai+1 y

m
1

(k−i+1)
ai+1 ]aki+2].

So, the relation (1.3) is solvable in the i+1 place, for all 1 ≤ i ≤ k−1 and consequently,
it is solvable in the k place.

For (k)
ai∈ Hk and xm1 ∈ Hm, there is zm1 ∈ Hm such that xm1 ∈ [(i)ai zm1

(k−i)
ai ]. Then

bm1 ∈ [ai1[
(i)
ai z

m
1

(k−i)
ai ]aki+1] = [ai−1

1 [(i+1)
ai zm1

(k−i−1)
ai ]aki ].

So, the relation (1.3) is solvable in the i−1 place, for all 1 ≤ i ≤ k−1 and consequently,
it is solvable in the 0 place.

Hence, (H, [ ]) is an (n,m)-hypergroup. �

4. Relations on (n,m)-hyperstructures

Let (H, [ ]) be an (n,m)-hypersemigroup. An equivalence relation ρ on H is said
to be

(a) regular if ajρbj, j ∈ {1, 2, . . . , n} and x ∈ [an1 ]s, s ∈ {1, 2, . . . ,m}, implies that
there exists y ∈ [bn1 ]s, s ∈ {1, 2, . . . ,m}, such that xρy;

(b) strongly regular if ajρbj, j ∈ {1, 2, . . . , n} implies that xρy, for every x ∈ [an1 ]s,
y ∈ [bn1 ]s and s ∈ {1, 2. . . . ,m}.

Theorem 4.1. Let (H, [ ]) be an (n,m)-hypersemigroup and ρ be an equivalence
relation on H.
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(i) If ρ is regular, then (H/ρ, [ ]ρ) is a (n,m)-hypersemigroup, where the operation
[ ]ρ consists of m component hyperoperations, [ ]ρ = ([ ]ρ1, . . . , [ ]ρm), each of
which is defined as follows:

[ρ(a1)ρ(a2) . . . ρ(an)]ρs = {ρ(x) |x ∈ [an1 ]s},
for every s ∈ {1, 2, . . . ,m}.

(ii) If (H/ρ, [ ]ρ) is a (n,m)-hypersemigroup, then ρ is a regular relation.
(iii) The canonical projection π : H → H/ρ such that π(a) = ρ(a) is a strong

homomorphism on the (n,m)-hypersemigroups (H, [ ]) and (H/ρ, [ ]ρ).
(iv) If (H, [ ]) is a (n,m)-hypergroup, then (H/ρ, [ ]ρ) is a (n,m)-hypergroup as

well.

Proof. (i) First, we will show that [ ]ρ is a well defined operation on H/ρ. Let
ρ(ai) = ρ(ci), for i = 1, 2, . . . , n. Clearly, aiρci, for i = 1, 2, . . . , n. Let ρ(x) ∈
[ρ(a1)ρ(a2) . . . ρ(an)]ρs. Then x ∈ [an1 ]s. By the assumption, ρ is a regular relation
and thus, for every x ∈ [an1 ]s there exists y ∈ [cn1 ]s, s = 1, 2, . . . ,m, such that
xρy. Since ρ(x) = ρ(y) and ρ(x) = ρ(y) ∈ [ρ(c1)ρ(c2) . . . ρ(an)]ρs it follows that
[ρ(a1)ρ(a2) . . . ρ(an)]ρs ⊆ [ρ(c1)ρ(c2) . . . ρ(cn)]ρs, s = 1, 2, . . . ,m. The converse inclusion
can be shown in a similar way.

In order to prove the (m + k,m)-associativity, suppose that ρ(ai) ∈ H/ρ, where
i = 1, 2, . . . ,m+ 2k and let ρ(z) belongs in

[[ρ(a1) . . . ρ(am+k)]ρ1 . . . [ρ(a1) . . . ρ(am+k)]ρm ρ(am+k+1) . . . ρ(am+2k)]ρs,
for s = 1, 2. . . . ,m. Then, there exists ρ(uλ) ∈ [ρ(a1)ρ(a2) . . . ρ(am+k)]ρλ, for λ =
1, 2, . . . ,m and z ∈ [um1 am+2k

m+k+1]s, for s = 1, 2, . . . ,m.
Clearly, z ∈ [[am+k

1 ]1 . . . , [am+k
1 ]m am+2k

m+k+1]s = [aj1 [aj+m+k
j+1 ]1 . . . [aj+m+k

j+1 ]m am+2k
j+m+k+1]s.

There exists xλ ∈ [aj+m+k
j+1 ]λ, for λ = 1, . . . ,m and j = 1, . . . , k, such that z ∈

[aj1xm1 am+2k
j+m+k+1]s, for s = 1, 2, . . . ,m. Therefore,

ρ(z) ∈[ρ(a1) . . . ρ(aj)[ρ(aj+1) . . . ρ(aj+m+k)]ρ1 . . . [ρ(aj+1) . . . ρ(aj+m+k)]ρm
ρ(aj+m+k+1) . . . ρ(am+2k)]ρs,

and thus
[[ρ(a1) . . . ρ(am+k)]ρ1 . . . [ρ(a1) . . . ρ(am+k)]ρm ρ(am+k+1) . . . ρ(am+2k)]ρs
⊆[ρ(a1) . . . ρ(aj)[ρ(aj+1) . . . ρ(aj+m+k)]ρ1 . . . [ρ(aj+1) . . . ρ(aj+m+k)]ρm
ρ(aj+m+k+1) . . . ρ(am+2k)]ρs,

for s = 1, 2, . . . ,m and j = 1, 2, . . . , k.
The converse inclusion can be shown similarly.
(ii) Let aiρci, for i = 1, 2, . . . , n. Then, ρ(ai) = ρ(ci), i = 1, 2, . . . , n and so

[ρ(a1)ρ(a2) . . . ρ(an)]ρs = [ρ(c1)ρ(c2) . . . ρ(cn)]ρs, for s = 1, 2, . . . ,m. For every x ∈ [an1 ]s,
s = 1, 2, . . . ,m, we have that ρ(x) ∈ [ρ(c1)ρ(c2) . . . ρ(cn)]ρs, so there exists y ∈ [cn1 ]s,
such that ρ(x) = ρ(y), and therefore xρy.
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(iii) We claim that π([an1 ]s) = [π(a1)π(a2) . . . π(an)]ρs, s = 1, 2, . . . ,m. Let ρ(a) ∈
π([an1 ]s), s = 1, 2, . . . ,m. Then, there exists a′ ∈ [an1 ]s, such that ρ(a) = π(a′). So,
ρ(a) = ρ(a′) ∈ [ρ(a1)ρ(a2) . . . ρ(an)]ρs = [π(a1)π(a2) . . . π(an)]ρs. Thus, π([an1 ]s) ⊆
[π(a1)π(a2) . . . π(an)]ρs, s = 1, 2, . . . ,m.

For the converse inclusion, let ρ(a) ∈ [π(a1)π(a2) . . . π(an)]ρs, s = 1, 2, . . . ,m. Since
π(ai) = ρ(ai), i = 1, 2, . . . , n, it follows that ρ(a) ∈ [ρ(a1)ρ(a2) . . . ρ(an)]ρs, s =
1, 2, . . . ,m. Then, there exists a′ ∈ ρ(a) such that a′ ∈ [an1 ]s, s = 1, 2, . . . ,m. Thus,
ρ(a) = ρ(a′) = π(a′) ∈ π([an1 ]s), so [π(a1)π(a2) . . . π(an)]ρs ⊆ π([an1 ]s), s = 1, 2, . . . ,m.

(iv) Suppose that (H, [ ]) is a (n,m)-hypergroup, i.e., (H, [ ]) is a (n,m)-hypersemi-
group such that for every an1 ∈ Hn, there is xm1 ∈ Hm such that am+k

k+1 ∈ [aj1xm1 akj+1],
for every j = 0, 1, . . . , k. Let ρ(ai) ∈ H/ρ, i = 1, 2, . . . , n. Then, there exists
t1, t2, . . . , tm ∈ H such that am+k

k+1 ∈ [aj1tm1 akj+1], for every j = 0, 1, . . . , k. Thus,
ρ(ak+s) ∈ [ρ(a1) . . . ρ(aj)ρ(t1) . . . ρ(tm)ρ(aj+1) . . . ρ(ak)]ρs, for every j = 0, 1, . . . , k and
s = 1, 2, . . . ,m. Therefore, (H/ρ, [ ]ρ) is a (n,m)-hypergroup. �

Theorem 4.2. Let (H, [ ]) be an (n,m)-hypersemigroup and ρ be a strongly regular
relation on H. Then

(i) (H/ρ, [ ]ρ) is an (n,m)-semigroup;
(ii) if (H, [ ]) is an (n,m)-hypergroup, then (H/ρ, [ ]ρ) is an (n,m)-group.

Proof. (i) Let ρ(x), ρ(y) ∈ [ρ(a1)ρ(a2) . . . ρ(an)]ρs, s = 1, 2, . . . ,m. Then, x, y ∈
[an1 ]s. Since ρ is strongly regular, it follows that xρy, i.e., ρ(x) = ρ(y). Thus,
|[ρ(a1)ρ(a2) . . . ρ(an)]ρs| = 1, for s = 1, 2, . . . ,m. Therefore, (H/ρ, [ ]ρ) is an (n,m)-
semigroup.

(ii) It follows from (i) and Theorem 4.1(iv). �

5. Future Work

We have started the investigation on vector valued hypersemigroups and vector val-
ued hypergroups. As a future work we are planing to introduce a relation β on a vector
valued hypersemigroup (hypergroup) and to investigate the fundamental equivalence
relation β∗ as the smallest equivalence relation on a vector valued hypersemigroup
(hypergroup), such that H/β∗ would be a vector valued semigroup (group).
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