
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

EXPLORING THE TERRIER INFORMATION RETRIEVAL PLATFORM FOR

WEB SEARCH OF DOCUMENTS WRITTEN IN MACEDONIAN

Vasil Vangelovski Sonja Gievska

Faculty of Computer Science and Engineering Faculty of Computer Science and Engineering

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Terrier is a modular and scalable platform for rapid

development of Information Retrieval (IR) systems. This

paper presents a short overview of the Terrier architecture and

describes ways in which it can be extended for more effective

indexing and searching of documents written in Macedonian

language. Although Terrier supports out of the box search in a

few non-English languages, the Macedonian language poses

some specific challenges, especially when search of Web

content is involved. An integrated search platform is

developed for the purpose of this research extending the text

retrieval engine with a more advanced content filtering

capabilities. Some of the proposed methods can be easily

applied to other non-English languages.

I. INTRODUCTION

The ever-increasing quantities of web content require

versatile, scalable and effective search solutions to be

integrated into applications and websites. While there is a

number of established commercial and open source search

solutions most of them are focused on search of English text.

Text indexing and searching is closely related to the

grammatical rules of the language under investigation hence

the rules of the English language are rarely appropriate for

other languages.

Search engines use stemming to reduce words to their root,

but in Macedonian a stem of the word may be a non-existing

word or a word with a different meaning. In addition, no fixed

number of letters subtracted from the end of the word

guarantees a valid stem.

Web content written in Macedonian, especially user-

generated content poses even more challenges when

designing an information retrieval system because of the

different ways text is written. Specifically, the official

alphabet for writing in Macedonian is Cyrillic. Because of

historical reasons (lack of support for Macedonian UTF

layouts in earlier operating systems) and practical reasons (the

need to switch between keyboard layouts) users often write

Macedonian text using only ASCII characters by loosely

transcoding from their Cyrillic phonetic counterparts. For

example the letter is written as the Latin letter c and some

letters are written using a combination of Latin letter and

often in different ways for example the letter is often

transcoded to sh or sch or simply s. The style of entering

search keywords varies between users as well.

Terrier, TERabyte RetrIEveR [1], is a high-performance

search engine that allows a rapid development of large- scale

retrieval applications, by providing a comprehensive, flexible,

robust and transparent platform for research and

experimentation in IR. The development of the Terrier

platform originated at the University of Glasgow with a

primary goal to facilitate research into Web search, but has

since been extended to include other applications and is

available as open source software. It includes a desktop

search application as well as a web search interface, although

the platform can be used as a Java library to develop custom

applications that utilize its text search facilities.

The architectural overview of the Terrier platform is

followed by the discussion of the proposed solutions for some

of the aforementioned problems. The to Terrier as a search

engine for user-generated web content in Macedonian applied

as an integral part of a real-world web application containing

a real collection of user-generated text.

II. OVERVIEW OF THE IR TERRIER PLATFORM

A. Indexing

The Terrier indexing process is divided into four stages:

Handling of a corpus of documents

Handling and parsing of each individual document

Processing the terms from and individual document

Building the index data structures

Modularity of the indexing components is achieved by

enabling the addition of plugins that can alter the behaviour at

each stage [2]. For example, indexing a collection of

documents stored on a FTP server would require an

implementation of a new collection of plugins that connects

to the FTP server and processes a stream of documents stored

on the server side. Similarly, a support for a new document

format could be added (besides the ones already supported)

by implementing a document parser for the particular format

and included as a plugin in the second stage.

Each term extracted from a document is defined by three

properties: the actual string representation of the term, the

position in the document where it occurs and the fields (zones

in the document) where it occurs. With such representation

terms are passed through a term pipeline, which allows each

term's property to be transformed in various ways. The most

common ways in which terms need to be transformed in a

typical full text search application are stemming and removal

of stop words. Terrier includes implementations for two

variants of the Porter stemming algorithm, and a stop words

removal for a few different languages.

109

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

Figure 1: Terrier Indexing Process.

The indexer is the last component in the term pipeline. It is

responsible for constructing the index using the appropriate

data structures. A Terrier index consists of four main data

structures:

Lexicon - Stores the term, it's unique id number, global

statistic for the term's frequency.

 Inverted Index - Stores the document unique id number

and the term frequency for each term in a particular

document. It can also store encoding of positional

information for each term in the document.

Document Index - Stores a document number, the

length of the document (number of tokens) and the

offset of the document in the direct index.

Direct Index - Stores the terms and term frequencies of

the terms found in each document. The main

objective for the direct index is to facilitate efficient

query expansion, in addition to being useful when

clustering a collection of documents.

B. Retrieval

The Terrier retrieval process is outlined in fig. 2. [2] [3]

The core functionality in a retrieval system is matching

documents to queries and assigning them scores that represent

their relevance to the query. Terrier offers a number of

implemented matching models for calculating a document

score, including a novel DFR - divergence from randomness

model [4]. A developer is free to choose from any of the

weighting models or provide their own implementation of a

weighting model.

There is set of term score modifiers for changing the initial

weighted term score. For example, a TermInFieldModifier

can be used to ensure that terms are found only in certain

fields in a document, while a FieldScoreModifier can be used

to increase the score of documents that have a term in a

certain field. Document scores can be modified by employing

document score modifiers, such as the PhraseScoreModifier,

which is used to remove documents that do not contain the

query terms. Document score modifiers are also very useful

for applying query-independent score modifications, such as

modifying the document scores based on the relevance of the

documents pointed by the hyperlinks embedded in the

document.

Figure 1: Terrier Retrieval Process.

Post-filtering of the scored documents returned by the

matching process can be applied to remove any documents

that don't satisfy certain conditions, for example the number

of documents from the same source or author can be reduced

to increase the diversity of the search results.

In addition to the modular and flexible retrieval

architecture, Terrier includes a flexible and powerful query

language [4]. The user of the retrieval system is allowed to

augment the query with special operators in order to

customize the results to better suit their need, for example:

+(t1 t2) specifies that only documents having both

terms are required

+t1 ~t2 specifies that documents need to contain t1 and

do not contain t2

t1^4.3 t2^1.2 will set the weights of t1 and t2 to 4.3

and 1.2, respectively; suitable for specifying relative

relevance of each term for a particular search

operation.

Terrier includes an automatic query expansion facility, by

extending the query with terms related to the terms used in a

query. This method of query expansion can be further

modified to suit particular application needs.

110

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

III. APPLICATION

A. Introduction

User-generated content on the web such as comments, forum

posts, status updates etc. poses additional challenges when

designing a text indexing and search platform. Specifically, a

large portion of the content is often poorly formatted,

grammatically incorrect, contains spelling mistakes and slang

words or ambiguous abbreviations. The web content written

in Macedonian is often based on different keyboard layouts

either loosely transcoded into ASCII characters from Cyrillic

or uses a combination of both. Because of these reasons test

data from collections of formal documents such as Wikipedia

articles is inadequate when assessing the capabilities of a web

content IR system.

We have designed our solution as an integral part of a

working classified ads portal with a majority of Macedonian

users [5]. The portal is using a search solution based on the

Solr [6] search engine in production, which conveniently

serves as a reference for the performance of our Terrier-based

design.

Classified listings in the application are entered within

separate categories and subcategories, a purpose for the ad

and a geographical region. Users can browse the content of

the site according to such categorization. The search interface

allows the users to further filter their search results by

selecting one or multiple categories and/or regions.

The search solution used in the production is a separate

server process, which accepts new content for indexing and

query requests through an HTTP REST interface. When the

search service is initialized, the index was built completely.

With each additional listing posted to the site, the index is

updated by sending a request to the search process with the

content of the posted listing. Search queries entered in the

application's interface are then passed as a request to the

search service; the returned results are reformatted before

presenting to the user. The actual indexing and retrieval

processes are performed within one stage, the search process.

To accommodate our architectural requirements, the

Terrier-based solution is an HTTP process that serves as an

interface wrapper around the Terrier platform, providing an

interface to our application consistent with the one used

during production. The details of the implemented extensions

related to both, the indexing and retrieval process of Terrier,

are discussed in the following subsections.

B. Extension to the Indexing Process

To speed up the process of rebuilding the full document index

we have created a separate document collection

implementation, which indexes the entire content of the site

by reading directly from the main relational database. For this

representation of the content items, a new document format

was implemented. Because our application relies on updating

the search index with XML representation of new content, a

separate document format was implemented specifically for

this purpose.

Our extensions to the term pipeline were realized by re

implementing the tokenizer, stop words removal and

stemmer specifically for Macedonian. The stop words

removal process removes stop words written in Cyrillic, but

also relies on transcoding Latin stop words as they are often

short and can rarely be transcoded ambiguously.

Our implementation of a stemmer is based on the existing

porter stemmer for the Russian language [7] because it uses a

subset of the Cyrillic alphabet similar to Macedonian. This

stemmer relies on first transcoding any Cyrillic words to their

Latin representations by a standard transcoding scheme and

then applying the stemming algorithm to the transcoded

content. Words written in Latin are stemmed unmodified. The

calculated suffixes from the words are then matched against

the original representation of the word to provide the final

stem in order to keep the original encoding of the text for

indexing purposes. Even though porter-based stemming

algorithms are not very effective for Russian or Macedonian,

we have decided to use such an implementation since it was

already available in Terrier and required only few

modifications to the stemming rules.

Our first modification to the actual indexer was altering the

indexing process in such a way that two versions of each

document were stored in the index, one for the original

document and one for the transcoded version. While we are

aware of the fact that this effectively doubles the size of the

stored index structures, the textual content that is indexed per

document is rarely longer than 100 words, which makes

storage considerations of a lesser for this application. This

eliminates the need to do any complicated query expansion in

the retrieval process and solves the problem of differently

formed queries within a phase, namely during the indexing

process.

When searching for listings, users usually add filters to

their query such as a category, subcategory and/or a region.

One way to implement the filtering was to process the results

returned from the search platform by running additional

queries against the database using the category and region

filters. However, this would have added to the overall amount

of data transferred between the search service and the

application and increased the overhead because of the

database queries. By observing the habits of users of the

application, we have also discovered that users expect to be

able to input the category or region in the search query

instead of checking the associated checkbox, for example

they would enter “Fiat Bravo in Skopje” and expect the

included geo location to be applied as a filter. A fully

integrated search solution was proposed by incorporating the

filtering capabilities during the indexing and retrieval process

itself. A separate index for categories and regions were added

alongside the content index. The title and content terms are

stored in a standard content index, while documents are

indexed by category and region in a separate index within

Terrier. It resulted in a more effective chained indexing

operation, by indexing the content and the title followed by

updating the category index.

C. Extension to the Retrieval Process

Our extension to the retrieval process was mainly directed

toward extending the query parsing, query expansion and

document ranking components of the Terrier retrieval

111

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

process. A custom query parser in Terrier that accepts queries

in XML format from the application was designed to facilitate

the filtering capabilities of the user interface. The user query

and the selected filters (if any) are presented as separate

entities. The user query was complemented with its

transcoded version by tokenizing the text query and

producing a transcoded version of each token. If the original

token was entered in Cyrillic it was transcoded in Latin and

vice versa.

The query text was also matched against the entries within

the category index to detect the query terms that specify a

category or a region. When a category filter preference was

discovered within a query, it was regarded as a non- exclusive

preference; each filter preference specified within the

application interface is regarded as an exclusive filter

preference. The approach allows the system to adjust to both

cases, especially preventing degrading search performance

when the name of a category or a region have a meaning as a

search term that should be accounted for as opposed to

considering it as a filter. In practice, whenever the query

model contains exclusive filters, the results are matched

against the category filter and the documents that do not

match the filters are removed from the result list. Conversely,

when a filter is considered non-exclusive, the category index

is used only to affect the document ranking in the resulting

list. Documents that match the non- exclusive filters are given

a score boost for each filter they match.

IV. EVALUATION

Traditionally information retrieval systems are evaluated by

using them to index a prepared test collection of documents,

which is later searched and evaluated by comparing the

ranking of the results against a prepared list of users’

rankings. The process enables engineers to establish

quantifiable metrics for evaluation that can be determined in

an automated manner. Considering that ranked training

collections of Macedonian content are not available, we have

decided to conduct a user survey to examine the performance

of the system in terms of its usability; improving the user

satisfaction was the main objective for extending the Terrier

architecture.

A group of seven volunteers participated in the survey. The

participants were asked to select a list of 20 queries from the

list of 100 most-frequently used queries according to the

system logs. The users were presented with two URLs, one

for each instance of the application; the mapping between

URL and a particular version was not revealed to the

participants. They were asked to enter each of the queries in

both systems, compare the top ten results and log their

opinion in terms of the relevance of the results. In order to be

able to draw conclusions on how the system performed with

regards to the sensitivity to the encoding of the entered query

the users were asked to test the system by entering the query

in Cyrillic and a version loosely transcoded in Latin.

There was between-subject variance of less than 5% and

the overall cumulative results could be summarized as

follows:

When the search query was entered unmodified

without any filters, both systems performed almost

the same; 78% of the answers were undecided.

For the queries transcoded to Cyrillic, 63% of the users

were in favor of the Terrier-based system, while

28% were in favor of the original system.

When the queries were transcoded to Latin, 57% of the

users were in favor of the Terrier-based system as

opposed to 24% in favor of the original system.

When a category or geographical region was added

to a query, 97% were in favor of our Terrier-based

system, remaining 3% were in favor of the original

system.

V. CONCLUSIONS AND FUTURE WORK

This research discusses the challenges and possible solutions

for effective information retrieval of user-generated web

content written in Macedonian. The Terrier architecture was

used as a basis for an integrated search solution, which

extends the retrieval system with filtering and ranking

capabilities.

An exploratory study was conducted to confirm the extent

of the hypothesized qualitative gains of the proposed

architecture. Our future research efforts are directed toward

comparative analysis of the various text retrieval models

supported by Terrier for the context under our investigation,

especially in terms of using more quantifiable metrics such as

precision and recall.

REFERENCES

[1] Terrier IR Platform - http://terrier.org/

[2] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C

Lioma, “Terrier: A High Performance and Scalable Information Retrieval

Platform”, in Proceedings of ACM SIGIR'06 Workshop on Open Source

Information Retrieval , 2006. Seattle, Washington, USA.

 [3] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and D.

Johson, “Terrier Information Retrieval Platform”, in Proceedings of the 27th

European Conference on Information Retrieval, 2005.

[4] I I. Ounis, C. Lioma, C. Macdonald and V. Plachouras, “Research

Directions in Terrier: a Search Engine for Advanced Retrieval on the Web”,

in Novatica/UPGRADE Special Issue on Next Generation Web Search,

Vol. 8, No. 1, 2007, pp. 49—56.

[5] oglasuva.me - http://oglasuva.me/

[6] Apache Solr - http://lucene.apache.org/solr/

[7] Snowball stemmer for Russian -

http://snowball.tartarus.org/algorithms/russian/stemmer.html

112

The 10th Conference for Informatics and Information Technology (CIIT 2013)

