INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE" WEB ISSN 2535-082X; PRINT ISSN 2535-0668

Comparison of Convolutional Codes and Random Codes Based on Quasigroups for
transmission in BSC

Lina Lumburovska', Aleksandra Popovska-Mitrovikj?, Verica Bakeva®
Faculty of Computer Science and Engineering,
Ss. Cyril and Methodius, University of Skopje, R.N. Macedonia
lina.lumburovska@students. finki.ukim.mk'
aleksandra.popovska.mitrovikj@finki.ukim.mk?
verica.bakeva@finki.ukim.mk’®

Abstract: Error-correcting codes are widely used in modern coding theory, and their applications in networks and communication cannot be
omitted. Together with the error detecting codes, they are the core of every possible transmission and communication. In coding theory,
information theory and telecommunications, error-correcting codes are used to control errors in data which are transmitted over different
communication channels. Convolutional block codes are one of the most popular error-correcting codes which are applied in many
networks. On the other side, Random Codes Based on Quasigroups (RCBQ) are cryptcodes defined elsewhere. These codes provide a
correction of a certain number of errors in the transmitted data and an information security in one algorithm. There are a few modifications
of RCBQ, but here we will consider performances of Cut-Decoding algorithm. In this paper, we investigate and compare the bit error
probability (BER) of these two codes for rate 1/4 and different values of bit-error probability in the binary symmetric channel. From the
obtained experimental results, we conclude that for lower bit-error probability in the binary symmetric channel, the RCBQs are slightly
better than convolutional codes. The advantage of RCBQs is that they have some cryptographic properties, but convolutional codes are
faster than RCBQs.

Keywords: CONVOLUTIONAL CODES, RCBQ, BIT ERROR PROBABILITY, BINARY SYMMETRIC CHANNEL

The convolutional codes are defined with three parameters: n, k and
K and each convolutional code can be written as (n, k, K). The
In the last several decades’ Coding theory together with its Slmllarlty with block codes is that they process input data of k bits at
error-correcting and error-detecting codes has evolved significantly. a time and give an output of 7 bits for each incoming & bits. In case
The formal definition to declare this branch as a separate discipline of convolutional codes, the parameters # and k are quite small, but
was created in 1948 when Claude Shannon announced his paper this is not the case for block codes. Apart from their similarity, the
with a title ”A Mathematical Theory of Communications”. The main difference is that the convolutional codes have memory which
primary focus of his paper is solving the problem of how to best is noted with the parameter K. Due to their memory, the current
send an encoded information (message) from a sender to a receiver. output of 7 bits depends not only on the value of the current block
In his continuous work, he proved that it is possible to encode a of k input bits, but also on the previous K — 1 blocks of & input bits.
message where the number of extra added bits is minimal. A few Basically, this is the main principle of using memory, executing the
years later in 1968, Richard Hamming, who was in the same current values with the knowledge of the previous ones and the
organization as Shannon, won the Turing Award where he produced states depend on each other. In other words, convolutional coding is
a 3- bit code for four data bits. This code by Hamming was invented ~ @ widely used coding that is not based on blocks of bits, but the
after various failed attempts to break out a message on a paper using ~ output bits are determined by logic operations that connect two
the parity code. In his frustration, he said the statement: “If it can ~ parts: the present bit in a stream and previous bits. As each bit
detect the error, why can’t I correct it!”, which became his main enters at the left of the register, the previous bits are shifted to the
motivation for finding error-correcting codes. Since then, the 1950s, right while the oldest bit in the register is removed and that is how
coding theory has changed and now consists of different models and the memory is constantly updated with the newest [3, 4].
codes. Today, error-correcting codes are widely used across various
computing systems and telecommunication channels [1].

1. Introduction

There are many ways to implement encoding and decoding of
convolutional codes and some of the most used are: convolutional

In this paper, we compare perforrnances of convolutional codes codes with shdlng parity bit calculation, convolutional codes as
and Random Codes Based on Quasigoups (RCBQs). Convolutional state machines and convolutional codes with trellis structures [5].
codes are one of the most used and researched codes, and RCBQs
are interesting cryptcodes, proposed in [7], and they use
cryptographic properties of algebraic structure called quasigroups.
In the experiment for the purpose of this paper, binary symmetric
channels (BSC) with different bit-error probabilities are used. [2].

The simplest implementation of convolutional codes is that with
a sliding window. The sliding window is used as a memory with
length K, and this parameter is also known as constraint length. The
memory window is used to select which message bits may
participate in the parity calculations, which is done using the

The rest of the paper is organized in the following way. In operation XOR. Before the calculation of the next parity bits, the
Section 2 we explain convolutional codes and their different window is moved to the right for one place. In such a case, larger
implementati()ns of encoding and decoding process. For RCBQS values of K provide better error-correcting capabilities and greater
there are different algorithms for encoding/decoding, but in this redundancy [5].
paper we will consider the performances using the Cut-Decoding
algorithm, proposed in [8]. Therefore, in Section 3, we describe the
encoding and decoding process of Cut-Decoding algorithm of
RCBQs. The experimental results for both codes and their
comparison are given in Section 4. At the end, we will draw some
conclusions from the conducted analysis.

For more complex error-correcting codes, the sliding window is
not recommended, and therefore the convolutional codes are usually
represented with state machines or trellis structures. As its name
says, the state machine is a finite automata which contains states
and has a starting state. In this case, the constraint length K is used
to calculate the number of states: 2. For each state (including the
starting one) it is defined which is the next state if the value is 0 or
if the value is 1. Also, for each input bit, there is an output of X

The two main categories of error-correcting codes are block (depending on the code rate) bits for each of the next states. For
codes and convolutional codes. Block codes work with fixed-size this paper, we made experiments for code rate 1/4, so that when the
blocks of bits or symbols of predetermined size. On the other hand,
convolutional codes work on bits or symbols of arbitrary length.

2. Convolutional Codes

98 YEARYV, ISSUE 3, P.P. 98-101 (2021)



INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE"

WEB ISSN 2535-082X; PRINT ISSN 2535-0668

state machine moves from one state to another, the output is four
bits [6].

The most sophisticated way to explain the convolutional codes
is with trellis structures. Every convolutional code that can be
presented with a state machine, it can be presented with a trellis
structure as well. In our experiments, we use implementation with
trellis structure due to their compatibility with Matlab. Transmitted
bits track a unique, single path of branches through the trellis. So,
the output of the whole trellis is just one path. Moving within the
trellis structure is more or less the same as in state machines. The
encoding starts in the starting state, checks the current bit on the
input, chooses the right path (0 or 1) and gives the suitable four
output bits for that current input bit. The procedure ends when the
last bit from the input is being encoded [5].

During the years, many algorithms were developed for decoding
convolutional codes. The most frequently used decoding algorithm
for convolutional codes is the Viterbi algorithm. This algorithm
was developed by Andrew Viterbi in 1967 and today is still the
most suitable algorithm for decoding convolutional codes. Viterbi
algorithm performs the decoding by finding the most likely path
through the trellis. The trellis is the same as for encoding, but the
procedure is different. There are two decoding techniques of Viterbi
algorithm: Hard Decision and Soft Decision. In our experiments, we
are using the Hard Decision Algorithm. Viterbi uses the Hamming
distance in order to calculate the most likely path. The Hamming
distance gives the difference between the value in the trellis and the
value that needs to be decoded. Each branch is labeled with a metric
and in this case the metric is the Hamming distance which is
calculated separately for every branch. Except for the starting state,
all other states have a unique predecessor state. The path in the
trellis that has the least number of different bits (different bits from
the input bits in the trellis structure), is used for decoding of the
current two output bits. Once a valid path is selected as the correct
path, the decoder can recover the input data bits from the most
likely output code bits [1].

4. Random Codes Based on Quasigroups

RCBQs are designed using algorithms for encryption and
decryption from the implementation of TASC (Totally
Asynchronous Stream Ciphers) by quasigroup string transformation
[9]. These cryptographic algorithms use the alphabet Q and a
quasigroup operation * on Q together with its parastrophe /.

- Encoding process

Standard coding algorithm is first algorithm for RCBQs
proposed in [7]. In this algorithm, first the message M =mm, ... m,
(of Ny = 4l bits where m; € Q and Q is an alphabet of 4-bit
symbols (nibbles)) is extended to a message L=L" L®.. LY =
L\L,...L, by adding redundant zero symbols. The produced message
L has N = 4m bits (m = rs), where L are sub-blocks of » symbols
from Q and L; € Q. In this way we obtain (N, N) code with rate
R= Nyt /N. The codeword is produced by applying the encryption
algorithm of TASC (given in Fig. 1) on the message L. For this aim,
a key k=kk,...k, € Q"should be chosen. The obtained codeword of
M is C=C,C,...C,,, where C; € Q.

In Cut-Decoding algorithm [8], instead of using a (N, N)
code with rate R, we use together two (N4, N/2) codes with rate
2R, that encode/decode the same message of N, bits. So, for
coding we apply the encryption algorithm, given in Fig. 1, on the
same redundant message L twice using different parameters
(different keys or quasigroups). The codeword of the message is
obtained with concatenation of the two codewords of N/2 bits.

- Decoding process

In all decoding algorithms of RCBQs, after transmission
through a noisy channel, the received message D is divide in s
blocks of r nibbles. Then we choose an integer B,,, (assumed
maximum number of bit errors that occur in a block during

99

transmission) and in each iteration we generate the sets H,= {a | a
€ ¢, HD®, a) < B}, for i =1, 2, ..., s and the decoding
candidate sets S, S|, S,,..., S;. These sets are defined iteratively and
Sy = (kiky...k,; 1), where A is the empty sequence. In the i-th
interaction, we form set S; of all pairs (8, w,w,...w,.,.;) obtained by
using the sets S; _; and H, as follows (w; are bits). For each (f,
WWy.. W) € Sy and each element a € H, we apply the
decryption algorithm given in Fig. 1 with input (a, ). If the output
is the pair (p, &) and if the sequences y has the redundant zeros in
the right positions (according to the chosen pattern), then the pair
(8, WiWs.. Wy 11)C1Ca-.Cy) = (8, WiW,...Wy,,.;) is an element of S;.

Encryption Decryption
Input: Key k= kiks.. .k, and Input: The pair
message L :L1L2. . .Lm (a1 ar... s, k1k2. . k,,)
QOutput: message (codeword) C | Output: The pair
= C1C2...C,,, (C‘] C2... Cs, K1Kz. . .K,,)
Forj=1tom Fori=1ton
XLy Ki«k;
T« 0; Forj=0tos -1
Fori=1ton X, T « aiy;
Xelk*X, temp < K,;
T«T®X; For i =n down to 2
ki< X; X « temp\ X;
by T T«ToJX,
Olltpllt: CJ «X temp « KH;
K< X
X e« temp\ X;
K, T
cin < X,
Olltpllt:(6'1€2. .. Cs, Kle. . K,,)

Fig. 1 TASC algorithm for encryption and decryption.

In Cut-Decoding algorithm, after transmitting through a noisy
channel, we divide the outgoing message D = D’D®...D® in two
messages D' and D? with equal lengths, and we decode them
parallel with the corresponding parameters. In this decoding

algorithm, in each iteration, we reduce the number of elements in

. . . . 1 2
the decoding candidate sets in the following way. Let Sf ) and SE )
be the decoding candidate sets obtained in the i* iteration of two

parallel decoding processes, i = 1,... , s/2. Before the next iteration,

. 1
we eliminate from SE ) all elements whose second part does not

. .2 .
match with the second part of an element in SE ), and vice versa. In

the (i+1)" iteration, the both processes use the corresponding
reduced sets. In this way, the size of the lists (decoding candidate
sets) becomes smaller.

After the last iteration, if the reduced sets have only one element
with the same second component, then this component is the
decoded message. In this case, we say that we have a successful
decoding. If the decoded message is not the correct one, then we
have an undetected-error. If the reduced sets have more than one
element after the last iteration, we have more-candidate-error. In
this case we randomly select a message from the reduced sets in the
last iteration, and we take this message as the decoded message. If
in some iteration all decoding candidate sets are empty, then the
process will finish (we say that a null-error appears). But, if we
obtain one nonempty decoding candidate set in an iteration, then the
decoding continues with the nonempty set.

In [10] and [11] authors have proposed methods for decreasing
the number of null and more-candidate errors by backtracking. In
the experiments for this paper, we use the following combination of
these two methods with backtracking. If the decoding ends with
null-error, then the last two iterations are cancelled and the first of
them is reprocessed with B,,+ 2 (the next iterations use the
previous value of B,,). If the decoding ends with

YEARYV, ISSUE 3, P.P. 98-101 (2021)



INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE"

WEB ISSN 2535-082X; PRINT ISSN 2535-0668

more-candidate-error, then the last two iterations of the decoding
process are cancelled, and the penultimate iteration is reprocessed
with B, — 1. In the decoding of a message, we use at most one
backtracking for null-error and at most one backtracking for
more-candidate-error.

3. Experimental Results and Analysis

In this section we will compare the experimental results for
bit-error probabilities obtained using a convolutional code and
RCBQ when the messages are transmitted through a binary
symmetric channel. For both codes, experiments are made for code
rate V4.

Experiments for RCBQ with Cut-Decoding algorithm are made
for code (72, 288) using the following code parameters:

- redundancy pattern: 1100 1110 1100 1100 1110 1100 1100
1100 0000

- two different keys: k£, = 01234 and &, = 56789

- quasigroup of order 16 on the set Q of nibbles given in
[12]

Experiments for convolutional codes are made using trellis
structure and following parameters:

- data bits k£ = 1, for each incoming bit, there are n bits
- n-bit codewords, n =4, each bit is coded with 4 bits
- constraint length K = 3, number of states is 4 (251)

In all experiments the input is a randomly generated list with
100000 bits (the source messages) and each experiment is
performed with the following steps:

1. The input is read from a text file (input.txt). The input is
encoded with a suitable code (convolutional or RCBQ)
and the encoded messages are written in another file
(coded value.txt).

2. The encoded bits are read from the text file coded
value.txt and sent through a BSC. The output of the
channel is written in another file (value from channel.txt).

3.  Then the output from the channel, file channel.txt, is
decoded with a corresponding code (convolutional or
RCBQ) and the decoded messages are written in another
file called decoded value.txt.

After the decoding process, decoded bits from the file
decoded value.txt are compared with the bits in the input
file input.txt, and we calculate the bit-error-probability for
the experiment.

The binary symmetric channel can have different probability for
incorrectly transmitted bits. Here, we will present and analyze
results for BSC with the following six different probabilities: 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08 and 0.09. Experimental results for
bit-error probabilities (BER) for both considered codes are given in
Table 2. In this table, BER rcbg denotes the bit-error probability for
RCBQ and BER c¢ the bit-error probability obtained by using
convolutional code. Also, the results for BER are graphically
presented on Fig. 2.

Table 1: Bit-error probabilities for convolutional codes and RCBQ

P BER rcbq BER ¢
0.02 0.00001 0.0033
0.03 0.00024 0.0054
0.04 0.00142 0.0081
0.05 0.00507 0.0119
0.06 0.00869 0.0165
0.07 0.02017 0.0215
0.08 0.03459 0.0270
0.09 0.05378 0.0332

100

Comparison of BER

0 0.02 0.04 0.06 0.08

| ——g— BER_rchq = e= BER_C

Fig. 2 Comparison of BER

From the results in Table 1 and Fig. 1, we can conclude that
both codes have good performances in correction of errors in the
binary-symmetric channel with the considered values of p. Namely,
in each row, experimental results for BER (BER rcbq and BER c)
are smaller than the bit-error probabilities in the channel.

Comparing the results obtained with RCBQ and the
convolutional code, we can see that for smaller values of bit-error
probabilities (p < 0.08) in the channel with RCBQs we obtain better
results for BER. Nevertheless, in all experiments, the time efficiency
of the convolutional codes is better than that of RCBQ. On the
other hand, the advantage of the RCBQ is that they have
cryptographic properties. Namely, if the data are encoded with
RCBQs, then the recipient can decode the message only if s/he
knows exactly which parameters (redundancy pattern, keys and
quasigroup) are used in the encoding/decoding process, even if the
channel is noiseless.

4. Conclusion

Error-correcting codes have an important role in
communications and transmissions of data. Different types of codes
have been developed over the years, but their usage remains still the
same.

The different implementations for convolutional codes such as
sliding window, state machines and trellis structures, show one
more time that they are widely extended. Also, their compatibility
and flexibility in Matlab are another proof that they can be designed
in many ways. Convolutional codes are the basics for understanding
turbo codes, which are parallel implementation for convolutional
codes and are widely used everywhere.

On the other hand, Random Codes based on Quasigroups are
relatively new codes, which have cryptographic properties which
are very important in data transmission nowadays. These codes
enable the correction of erroneously transmitted bits in a noisy
channel and security of transmitted messages, using a single
algorithm. Also, from the experimental result presented in this paper
we can conclude that for lower bit-error probabilities in BSC,
RCBQs have better performances in correction of errors than
convolutional codes.

At the end we must note that there is no right or wrong code
since each code is better in different situations. In order to
determine which code is most appropriate for a particular purpose,
all circumstances must be taken into consideration. RCBQs have
some cryptographic properties, but the convolutional codes are
faster.

YEARYV, ISSUE 3, P.P. 98-101 (2021)



INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE"

WEB ISSN 2535-082X; PRINT ISSN 2535-0668

5. References

[1] S. Mukherjee. Morgan Kaufmann. Architecture design for soft
errors. (2011)

[2] L. Wang, G.W. Wornell, L. Zheng. IEEE Transactions on
Information Theory. Fundamental limits of communication with low
probability of detection. 62(6) 3493-3503. (2016)

[3] C. Beard, S. William. Pearson. Wireless communication
networks and systems. (2015).

[4] A. Bensky. Newnes. Short-range wireless communication.
(2019)

[5] https://www.cs.princeton.edu/courses/archive/spring18/cos463
/lectures/L09-viterbi.pdf (27.05.2021)

[6] T. Richardson, U. Ruediger. Cambridge university press.
Modern coding theory. (2008)

[71 D. Gligoroski, S. Markovski, Lj. Kocarev, Error-correcting
codes based on quasigroups, in Procedings of 16th Intern. Confer.
Computer Communications and Networks, ICCCN 2007, Honolulu,
pp. 165-172. (2007)

[8] A. Popovska-Mitrovikj, S. Markovski, V. Bakeva, Increasing the
decoding speed of random codes based on quasigroups'. in: S.
Markovski, M. Gusev (Eds.), ICT Innovations 2012, Web
proceedings, ISSN 1857-7288, 2012, pp. 93-102. (2012)

[9] D. Gligoroski, S. Markovski, Lj. Kocarev, Totally asynchronous
stream ciphers + Redundancy = Cryptcoding. in: Aissi, S., Arabnia,
H.R. (eds.), Proceedings of the International Conference on Security
and management, SAM 2007, CSREA Press, Las Vegas, pp.
446-451. (2007)

[10] A. Popovska-Mitrovikj, S. Markovski, V. Bakeva,
Performances of error-correcting codes based on quasigroups’, in
Goémez, D., Davcev, JM (Ed.) ICT innovations 2009, Springer,
Berlin, Heidelberg, pp. 377-389 (2010)

[11] A. Popovska-Mitrovikj, S. Markovski,V. Bakeva, Increasing
the decoding speed of random codes based on quasigroups, in
Proceedings of ICT innovations 2012, pp. 93-102. (2012)

[12] A. Popovska-Mitrovikj, S. Markovski,V. Bakeva,
Performances of error-correcting codes based on quasigroups. in:
Davcev, D., Gomez, J.M. (eds.) ICT-Innovations 2009, pp. 377-389.
Springer (2009)

101

YEARYV, ISSUE 3, P.P. 98-101 (2021)



	21_Csengeri_CS
	8_Пъневски_CS
	3_Łukasz Jureńczyk
	25_Димитров_CS.doc(x)
	12_Kamenov
	23_Генчев_CS
	42_Lumborovska
	10_Tumbarska_ConfSec
	16_Varbanov
	38_Zahradníček
	28_Kolev_S_Automatic gain control in an underwater acoustic receiver



