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Abstract. In this work we analyze robot motion given from the UTIAS
Multi-Robot Dataset. The dataset contains recordings of robots wander-
ing in a confined environment with randomly spaced static landmarks.
After some preprocessing of the data, an algorithm based on the Ex-
tended Kalman Filter is developed to determine the positions of robots
at every instant of time using the positions of the landmarks. The al-
gorithm takes into account the asynchronous time steps and the sparse
measurement data to develop its estimates. These estimates are then
compared with the groundtruth data provided in the same dataset. Fur-
thermore several methods of noise estimation are tested, which improve
the error of the estimate for some robots.

Keywords: robot localization · Extended Kalman Filter · noise estima-
tion · real-world data

1 Introduction

In many research areas there are similar types of problems requiring some kind
of localization in space, such as in robotics [1, 2], wireless sensor networks [3, 4],
vehicle [5] and wildlife tracking [6] etc. Plenty of different approaches have been
developed for solving these problems among which the Extended Kalman Filter
(EKF) described in [7] has been one of the most employed, particularly in robot
localization [1]. A good introduction to the Extended Kalman Filter is given in
[8]. The EKF has been obtained by extending the applicability of the classical
Kalman filter [9] to problems with a nonlinear model or measurement function.
All varieties of the Kalman filter belong to the group of Bayesian approaches
for localization, such as particle filters and multi-hypothesis tracking, surveyed
in [10]. Although localization problems have been widely addressed there are
still many aspects, particularly those which are application specific, that can be
further analyzed.

An implementation of EKF applied on a real dataset of several robots measur-
ing distances to several reference points is presented in [11]. There the authors
develop a general method that utilizes a decentralized robot network, where
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robots communicate state estimates of objects in the environment for purposes
of localization. They obtain the same results as with a centralized network with
the added benefit that the robots can use the Markov property to reduce mem-
ory, without taking into account the knowledge of other robots.

In this paper we provide a case study of the problem of localization using the
Extended Kalman Filter applied on the same dataset as above, focusing on single
robot localization. Due to the nature of data provided, several aspects of the
problem are studied such as tackling asynchronous measurements at arbitrary
timestamps and running the EKF in steps of varying duration. Methods that
estimate the measurement and process noise are characterized, while the inherent
bias of the measurement data is examined in detail and then corrected, as in [11].
These findings could be helpful in a more appropriate application of the EKF
for localization problems and its further refinements.

The organization of the paper is the following. First, in Section 2 a presen-
tation is given of the dataset used in the experimentation. Section 3 contains a
description of the application of the localization method (EKF), while Section
4 shows techniques of determining the characteristics of noise from the data in
order to incorporate them in the EKF. Section 5 presents an explanation of how
the data is preprocessed and offers some numerical results for localization based
on several parameters. Finally, in Section 6 we give some conclusions and discuss
possible directions for future work.

2 Data Description

This paper uses the UTIAS Multi-Robot Cooperative Localization and Mapping
Dataset [12]. The dataset is created by 9 runs of separate experiments. In each
experiment 5 robots move randomly in a confined environment for a certain
amount of time. They can perceive each other and 10 stationary landmarks
for the purpose of localization. While moving, each robot collects groundtruth,
control and measurement data:

– the groundtruth data records the robot’s position and orientation (x, y, θ),
and the landmark’s positions (x, y) in the laboratory reference system. This
data is obtained with a 10-camera Vicon motion system that collects data
every 0.01s on average with an accuracy of 10−3m.

– the control data is composed of records of the robot’s forward and angular
speed (v, ω). For each robot they are issued roughly every 0.015s.

– the measurement data consists of estimates of distances from the landmarks
and other robots and the angle at which they are perceived (z = (d, θ)), as
seen from the reference system located at the robot where the measurements
are taken. These readings are sparser occurring every 0.2s on average.

Each of the 9 experiments has a different running time and different land-
mark positions. In some of them a certain number of obstacles are placed in the
environment.
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3 EKF Algorithm

The Kalman filter is a sequential Bayesian inference method generally applied
in systems evolving in time, where the state estimate at the next moment is
obtained in two steps. In the first step, referred as prediction, a state estimation
is based on some model of the dynamics of the system. The second step is
correction, because the estimate is improved using some measurements. The
literature on the Kalman filter is abundant and the authors refer the novice
reader to [8].

This section simply applies the Kalman filtering procedure given in the same
work, by skipping the derivation and only focusing on the points that are typical
for this work. This analysis uses the Extended Discrete Kalman Filter since the
measurements are non-linear functions of the state variables. To create a model
that produces trajectories comparable with the groundtruth, linear approxima-
tion can be applied, and then the following model of motion can be used

x−k+1 = xk + vk cos θn∆tk,

y−k+1 = yk + vk sin θn∆tk,

θ−k+1 = θk + ωk∆tk, (1)

where the minus in the superscript means that the value is predicted, subscripts
denote the number of iteration, while ∆tk is the time interval between two
consecutive measurements, which as was said before is not constant. To shorten
the notation one can put the state variables in a column vector x = (x, y, θ)T

and thus obtain a simple version of the evolution model xk+1 = f(xk). The error
of the estimate is the difference between the state vector and the corresponding
vector obtained from the groundtruth data xg = (xg, yg, θg)T

e = x− xg. (2)

Then, the prediction error covariance matrix of the Kalman filter-P, which is
the expectation of the product eeT evolves according to

P−
k+1 = APkA

T + Qk, (3)

where Qk is the model error covariance matrix and A is the system dynamics
matrix

A =

1 0 −vk sin θk∆tk
0 1 vn cos θk∆tk
0 0 1

 . (4)

When the measurements arrive, the predicted state can be improved, which
according to the second step in Kalman filtering is a linear combination of the
predicted state and the difference between the measurements and their estimates

xk+1 = x−
k+1 + Kk

(
zk+1 −Hkx

−
k+1

)
. (5)
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In the last equation the measurements at moment k+ 1 are packed in the vector
zk+1, their estimates are the product Hkx

−
k+1, while Kk is the Kalman gain

matrix that optimizes the correction. The matrix elements of Hk relate the
measurement zi with the state variables xj with Hi,j = ∂zi

∂xj
. As given above,

the measurements for a certain robot are distances from it to some landmark or
other robot and the angle at which the other robot or landmark is estimated to
be seen. Focusing on a robot denoted with index r, the distance to the landmark
l is

dr,l =
√

(xr − xl)2 + (yr − yl)2, (6)

while in robot’s coordinate system the landmark is estimated to be seen at angle

θr,l = arctan

(
yl − yr
xl − xr

)
− θr, (7)

where the last expression can be obtained with simple analytic geometry. The
landmarks are assumed to have known positions (xl, yl). Then, the matrix el-
ements Hr,l for all robots r and for all measurements to the landmarks l can
be obtained with straightforward calculus. The only non-zero elements are the
following

∂dr,l
∂xr

=
xr − xl
dr,l

,

∂dr,l
∂yr

=
yr − yl
dr,l

,

∂θl
∂xr

=
yl − yr

(xl − xr)2
· 1

1 +
(

yl−yr

xl−xr

)2 ,
∂θl
∂yr

= − 1

xl − xr
· 1

1 +
(

yl−yr

xl−xr

)2 ,
∂θl
∂θr

= −1. (8)

According to the Kalman filter theory the optimal Kalman gain at iteration k is

Kk = P−
k+1H

T
k

(
HkP

−
k+1H

T
k + Rk+1

)−1
, (9)

where Rk+1 is the measurement error covariance matrix.
The Extended Kalman Filter expects discrete concurrent control and mea-

surement data, where each control reading is used to obtain a priori state es-
timate (Eq. (1)) and the concurrent measurement reading is used to obtain a
posteriori state estimate (Eq. (5)). For the purpose of this dataset a constant
time step could not be used as the data readings occur asynchronously. Fur-
thermore, as the robots do not receive a measurement simultaneously with each
control datum, the robot’s position can not be updated until it receives a mea-
surement reading. This means that the robot’s a priori state estimate is updated
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asynchronously as new control data come in, and when it obtains a measurement
datum, that is used that to get a posteriori state estimate. As the control data
arrives much more frequently, one can assume that for a measurement datum
that updates the a priori state, there was a previous control datum shortly be-
fore it i.e. the control and measurement readings occurred at roughly the same
time.

4 Noise Estimation Procedures

As is given, the Kalman Filter has unspecified values for the process and mea-
surement noise in Eq. (3) and Eq. (9), respectively. These are unique to the
environment and the robot’s hardware, but as they are not available for the
dataset a method needs to be developed that estimates them.

4.1 Estimating the Measurement Noise

The measurement noise quantifies the uncertainty of the robot’s abilities to dis-
cern targets using various sensors. For this problem it can be calculated as the
covariance matrix of the difference ez = z−ẑ between the measurement estimate
of a relative target’s state ẑ obtained from the dataset, and the actual relative
target’s state z, shown in [8].

Using relative range and bearing (d, θ) from the measurement data and the
robot’s actual groundtruth state (x, y, θ), estimated absolute target states can
be calculated. The difference between these estimates and the actual absolute
target states can be used for measurement noise computation (i.e. the difference
between the positions the robot perceives the targets and the positions at which
they are actually located). The covariance matrix of these differences can be
used in Eq. (9).

However, one can expect that the distance noise level depends on the angle
at which the robot located the target (for example if a robot located the target
at an obtuse angle it might cause a bigger distance error, than if the target was
centred in its field of view). This hypothesis is confirmed in Fig. 1, that shows the
distance measurement error depending on the measurement angle. The scattered
points correspond to all measurements for all robots for the first 8 experiments1.
As expected the results show that the distribution of the distance measurement
error is correlated with the measurement angle, with smaller distance errors
occurring for measurements near the centre axis of the robot, and bigger distance
errors occurring at the edges of the robot’s field of view, resembling a parabolic
curve.

For this reason a method is proposed, which takes care to change the dis-
tance measurement noise estimate depending on the measurement angle. First
the measurement data is segmented into 150 equal width bins, based on the
measurement angle, then for each bin the average and variation of the errors is
calculated. To further smooth the data a second degree polynomial line2 is fitted

1 The 9-th experiment is excluded, as it has different environment conditions
2 We use a regression ridge model for smoothing
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Fig. 1. Distance error versus the measurement angle. Every robot roughly has a field
of view spanning in the range of -0.6 to 0.6 radians. For the purposes of this plot one
percent of extreme values were removed.

over these values, and then finally these smoothed values are used for the estima-
tion. The obtained results are shown in Fig 2. As a result, for each measurement
that belongs to a particular bin the EKF can use separate values. The variation
per each bin is used as the covariance noise estimate in Eq. (9). Furthermore,
the Kalman filter expects the noise to have a mean of 0, while in Fig. 1 the mea-
surement distance error is shown to be positively biased. For this reason Eq. (5)
is amended, with the addition of the bin average of the measurement distance
error, which causes the measurement distances to be centred around zero. The
results obtained from applying this method are shown in Section 5.

Fig. 2. This figure shows the variance and average of the measurement distance error
from all the bins based on measurement angle, additionally a polynomial line of degree
2 is drawn to smooth the data.
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4.2 Estimating the Process Noise

The process noise represents the difference between the system evolution accord-
ing to the model and its real counterpart. In Kalman filter theory it is quantified
with the covariance matrix of the error e = xk − x̂k between the actual state of
the robot xk and its version obtained by evolving the previous actual state for
one step by the model x̂k = f(xk−1).

To estimate the process noise one can run the whole experiment and calculate
the average error between the robot’s estimated state (1) obtained using the
above model, and the true groundtruth value (x, y, θ) provided by the dataset,
which should give a good estimate for the actual process noise.

This can be achieved by iterating through the control data. Every control
reading is applied to the groundtruth robot position at the moment3 of the
previous control. Subsequently, the difference is calculated between that state
and the groundtruth robot state at the time of the new control. These differences
serve as a mean to estimate the error between the system evolution derived using
control readings, and the actual robot motion calculated using groundtruth data.
The process noise estimate is then computed as the covariance matrix of these
differences (used in Eq. (3)). Moreover, there are several scopes of data that
one can use to compute the covariance. The estimate can be obtained using
differences from data readings of a single robot or more broadly data readings
from the whole experiment or even differences coming from the entire dataset
(this is further discussed in Section 5).

5 Results

The dataset contains many robots that are purported to move randomly during
their experiment. However after some analysis one can find that some robots got
’stuck’ and stopped moving for a period of time.

There are several robots with similar movement in the dataset. For these
robots the state estimate error remains constant for a long period, which does
not produce realistic results when evaluating error statistics.

In order to gain meaningful results, we consider only the robots that kept
moving randomly for the whole duration of their experiment. In addition the
9-th experiment that contained obstacles in the environment is discarded from
the analysis, as it had different environmental conditions from the other 8 ex-
periments.

The analysis of this paper is focused on a single robot trying to localize
itself inside its environment, using measurements coming only from landmarks.
A general algorithm is developed, which allows experimentation with different
robots from the dataset. We then study several scenarios:

– For the process noise estimate (p.n.) one can use different scopes to estimate
the noise:

3 Linear interpolation on the groundtruth data is used, so there are estimates of the
robot state at any moment.
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• using data from each robot run, to estimate the process noise in its run
• using data averaged over the whole experiment, i.e. all 5 robots that

operated concurrently in the environment
• using data averaged over the whole dataset, i.e. all 8 experiments

The variance of error of the needed scope of data is used in Eq. (3).
– The measurement noise estimate (m.n.) can also be calculated using different

scopes for estimation. The variance of the needed scope of data is used in
Eq. (9). Otherwise, the algorithm can also use the equal width bin method
as explained in Subsection 4.1.

– In this dataset robots perceive their environment by periodically taking pic-
tures and then processing them to obtain relative range and bearing to rec-
ognized targets (each object in the environment has a bar-code that uniquely
identifies it [12]). This means that at some distinct time a single robot poten-
tially has measurements to several landmarks. For the case where a robot has
concurrent landmarks measurements, the algorithm can choose to include all
of them, or just use a single landmark measurement, in Eq. (5).

For each of these scenarios the algorithm provides an error calculated from the
average difference between the estimated robot’s state and the actual groundtruth
robot state. Since the groundtruth and control data from the dataset are not syn-
chronous, the state estimations occur at different moments than the groundtruth
data. To obtain a valid error estimate, the algorithm uses linear interpolation
to compute groundtruth data for the moments when the estimations are calcu-
lated. We then focus on the results coming from the whole dataset and results
when including only the top 5 robots of the dataset (the robots which are best
localized by the algorithm). For each error estimate the algorithm calculates the
absolute average error, and the standard deviation of the error. The results are
summarized in Tables 1 and 2.

The tables demonstrate a fairly big difference between the top 5 robots and
the rest. Because of this a further direction of research might be into visualizing
the robot motion and determining reasons why these robots are localized better.

Concerning the measurement noise, the equal width bin method performs
good on the dataset, mainly because it takes into account both the changing
variance based on the measurement angle, and the unsymmetrical measurement
distance error. The method is worse when using smaller scopes of data for es-
timation. However it is unrealistic that one can obtain specific estimates when
operating in a real environment. Moreover, the method actually performs best
when focusing on the top robots of the dataset (Table 2). Further analysis could
be directed into finding methods that use different segmentation techniques and
better smooth the data in the different segments.

For the landmark option, as expected, the algorithm gets better results when
using multiple landmarks. This is especially true when focusing on the whole
dataset, however, for the top 5 robots this option does not make a big change in
the error. More investigation is needed into the choice of landmark measurements
used, perhaps only including the closest and most centred landmarks will give
better results.
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Table 1. Error statistics (absolute average and standard deviation) for different pa-
rameters, described at the beginning of this section. This data comes from the first 8
experiments in the dataset.

Different scenarios avg.; sd. of position er.[m] avg.; sd. of angle er.[rad]

p.n. from whole dataset 0.1506; 0.3798 0.1177; 0.2599

p.n. from one experiment 0.1513; 0.3805 0.1179; 0.2602

p.n. from single robot 0.1512; 0.3799 0.1180; 0.2603

m.n. with equal width bins 0.1586; 0.4384 0.1455; 0.3471

m.n. from single robot 0.1506; 0.3798 0.1177; 0.2599

m.n. from one experiment 0.1521; 0.3752 0.1180; 0.2570

m.n. from whole dataset 0.1652; 0.3971 0.1416; 0.3246

multiple landmarks 0.1506; 0.3798 0.1177; 0.2599

single landmark 0.1598; 0.3947 0.1225; 0.2696

Table 2. Error statistics (absolute average and standard deviation) for different pa-
rameters, described at the beginning of this section. This data comes from the 5 most
precisely localized robots in the dataset.

Different scenarios avg.; sd. of position er.[m] avg.; sd. of angle er.[rad]

p.n. from whole dataset 0.0471; 0.0632 0.0540; 0.0833

p.n. from one experiment 0.0484; 0.0646 0.0561; 0.0855

p.n. from single robot 0.0490; 0.0658 0.0572; 0.0866

m.n. with equal width bins 0.0471; 0.0632 0.0540; 0.0833

m.n. from single robot 0.0558; 0.0752 0.0417; 0.0752

m.n. from one experiment 0.0607; 0.0801 0.0442; 0.0767

m.n. from whole dataset 0.0706; 0.0881 0.0603; 0.0876

multiple landmarks 0.0471; 0.0632 0.0540; 0.0833

single landmark 0.0477; 0.0635 0.0560; 0.0846

6 Conclusions and Future Work

This paper presents a study on localization of robots based on real data. As
it can be expected with such data there are certain problems pertaining to
synchronizing the input data and uncertain robot’s movements. However the
results demonstrate several findings.

The error is very much dependent on the quality of the robot’s motion
through the environment with the best 5 localizations of robots achieving around
3 times better results, as compared to all the other robots in the dataset (Tables
1 and 2). When the robots view multiple targets and keep perceiving landmarks
for a longer time they perform better. To achieve even better results, aspects
such as the unsymmetrical measurement distance and the changing measurement
variance need to be included in the computation.
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This paper provides a solid foundation for further analysis in cooperative
multi-robot localization, which can be performed using the same dataset as it
also contains robot-to-robot measurements. Cooperative multi-robot approaches
have been described in [13] and [14] using distributed EKF. In such a multi-
robot scenario robot-to-robot and robot-to-landmark measurements need to be
combined, which have different characteristics as the former accumulates error
on its multi-hop path, while the latter is prone only to single hop measurement
noise. Therefore, the localization could be performed better using a modified
version of the EKF that allows weights to be given to the different types of
measurements.
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