Free Ternary Semicommutative Groupoids

Vesna Celakoska-Jordanova
Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
Republic of Macedonia

Abstract. Free objects in the variety V of ternary groupoids defined by the identity $[x y z] \approx[z y x]$, are described. A proper characterization of the class of V-free objects by means of the class of V-injective groupoids is obtained as well.

Key words: ternary semicommutative groupoid, free/injective ternary semicommutative groupoid.

1. INTRODUCTION AND PRELIMINARIES

An algebra with one ternary operation is called a ternary groupoid and is denoted by $(G,[])$. A ternary groupoid $(G,[])$ is semicommutative if $[x y z]=[z y x]$ for all $x, y, z \in G([1])$. The class of ternary semicommutative groupoids is a variety defined by the identity $[x y z] \approx[z y x]$ and it is denoted by V. We will give a description of free objects in this variety using the absolutely free ternary groupoid $\mathbf{F}_{X}=(F,[])$.

For the sake of completeness we will briefly present the construction of the absolutely free ternary groupoid $\mathbf{F}_{X}=(F,[])$ that is a special case of the construction of an absolutely free (n, m) -groupoid over a nonempty set X, that does not contain the symbol [], for $n=3$ and $m=1$ ([4]). Let $F_{0}, F_{1}, \ldots, F_{p}, \ldots$ be a sequence of disjoint sets such that

$$
\begin{gathered}
F_{0}=X, F_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}, x_{2}, x_{3} \in F_{0}\right\}, \ldots, \\
F_{p+1}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \mid t_{1}, t_{2}, t_{3} \in F_{0} \cup F_{1} \cup \ldots \cup F_{p} \wedge(\exists i \in\{1,2,3\}) t_{i} \in F_{p}\right\} .
\end{gathered}
$$

If $t \in F_{p}$, then we say that t has a hierarchy p and denote it by $\chi(t)$.
Put $F=\bigcup\left\{F_{p}: p \geq 0\right\}$ and define a ternary operation []: $F^{3} \rightarrow F$ by:

$$
t_{1}, t_{2}, t_{3} \in F \Rightarrow\left[t_{1}, t_{2}, t_{3}\right]=\left(t_{1}, t_{2}, t_{3}\right) .
$$

Then $\mathbf{F}_{X}=(F,[])$ is a ternary groupoid. The set X is the generating set for \mathbf{F}_{X} and \mathbf{F}_{X} has the universal mapping property for the class of ternary groupoids over X. Therefore, $\mathbf{F}_{X}=(F,[])$ is free over X in the class of ternary groupoids. The groupoid \mathbf{F}_{X} is injective, since the operation [] is an injective mapping, i.e. $\left[a_{1}, a_{2}, a_{3}\right]=\left[b_{1}, b_{2}, b_{3}\right] \Rightarrow a_{1}=b_{1}, a_{2}=b_{2}, a_{3}=b_{3}$. The set X is the set of prime elements in \mathbf{F}_{X}. An element $u \in F$ is said to be prime in \mathbf{F}_{X} if and only if $u \neq\left[t_{1}, t_{2}, t_{3}\right]$ for all $t_{1}, t_{2}, t_{3} \in F$. These two properties characterize all absolutely free ternary groupoids ([2], [3]).

Proposition 1.1. A ternary groupoid ($H,[]$) is absolutely free if and only if $(H,[])$ is injective and the set of primes in $(H,[])$ is nonempty and generates ($H,[]$).

We refer to this proposition as Bruck Theorem for the class of all ternary groupoids.

Define the length $|t|$, the set $P(t)$ of subterms and the set $\operatorname{var}(t)$ of variables, for every $t \in F$, inductively in the following way:

$$
\begin{aligned}
& t \in X \Rightarrow|t|=1, \quad t=\left[t_{1} t_{2} t_{3}\right] \Rightarrow|t|=\left|t_{1}\right|+\left|t_{2}\right|+\left|t_{3}\right|, \\
& t \in X \Rightarrow P(t)=\{t\}, \quad t=\left[t_{1} t_{2} t_{3}\right] \Rightarrow P(t)=\{t\} \cup P\left(t_{1}\right) \cup P\left(t_{2}\right) \cup P\left(t_{3}\right), \\
& t \in X \Rightarrow \operatorname{var}(t)=\{t\}, \quad t=\left[t_{1} t_{2} t_{3}\right] \Rightarrow \operatorname{var}(t)=\operatorname{var}\left(t_{1}\right) \cup \operatorname{var}\left(t_{2}\right) \cup \operatorname{var}\left(t_{3}\right) .
\end{aligned}
$$

2. A CONSTRUCTION OF CANONICAL OBJECTS IN V

A ternary semicommutative groupoid $\mathbf{R}=\left(R,[]^{*}\right)$ is said to be canonical if the following conditions are satisfied:
(C0) $X \subseteq R \subseteq F$ and $t \in R \Rightarrow P(t) \subseteq R$;
(C1) $\left[t_{1} t_{2} t_{3}\right] \in R \Rightarrow\left[t_{1} t_{2} t_{3}\right]^{*}=\left[t_{1} t_{2} t_{3}\right]$;
(C2) \mathbf{R} is a V-free groupoid over X.
Define an ordering in F, denoted by \leq, in the following way. Let X be a linearly ordered set and $t, u \in F$. If $t, u \in X$, then $t \leq u$ in $F \Leftrightarrow t \leq u$ in X; if $\chi(t)<\chi(u)$, then $t \leq u$; if $\chi(t)=\chi(u) \geq 1$ and $t \neq u$, where $t=\left[t_{1} t_{2} t_{3}\right], u=\left[u_{1} u_{2} u_{3}\right]$, then lexicographical ordering is used, with elements earlier in the lexicographical ordering coming first, i.e.
$\left.t<u \Leftrightarrow\left[t_{1}<u_{1} \vee\left(t_{1}=u_{1} \wedge t_{2}<u_{2}\right)\right] \vee\left(t_{1}=u_{1} \wedge t_{2}=u_{2} \wedge t_{3}<u_{3}\right)\right]$.
By induction on hierarchy one can show that F is a linearly ordered set.

Define a set R by:

$$
R=X \cup\left\{t \in F \backslash X \mid\left[t_{1} t_{2} t_{3}\right] \in P(t) \Rightarrow t_{1} \leq t_{3}\right\} .
$$

Proposition 2.1. a) $X \subset R \subset F ; t \in R \Rightarrow P(t) \subseteq R$.
b) $t_{1}, t_{2}, t_{3} \in R \Rightarrow\left(\left[t_{1} t_{2} t_{3}\right] \notin R \Leftrightarrow t_{3}<t_{1}\right)$.
c) $t_{1}, t_{2}, t_{3} \in F \Rightarrow\left(\left[t_{1} t_{2} t_{3}\right] \in R \Leftrightarrow t_{1}, t_{2}, t_{3} \in R \wedge t_{1} \leq t_{3}\right)$.

Define a ternary operation []* in R by:

$$
t_{1}, t_{2}, t_{3} \in R \Rightarrow\left[t_{1} t_{2} t_{3}\right]^{*}=\left\{\begin{array}{l}
{\left[t_{1} t_{2} t_{3}\right], \text { if } t_{1} \leq t_{3}} \\
{\left[t_{3} t_{2} t_{1}\right], \text { if } t_{3}<t_{1} .}
\end{array}\right.
$$

By a direct verification one can show that $\left(R,[]^{*}\right)$ is a ternary semicommutative groupoid, the set of prime elements in ($R,[]^{*}$) coincides with X and generates $\left(R,[]^{*}\right)$. Also, $\left(R,[]^{*}\right)$ has the universal mapping property for V over X. Namely, if $\mathbf{G}=\left(G,[]^{\prime}\right) \in V$ and $\lambda: X \rightarrow G$ is a mapping, then there is a homomorphism $\psi: \mathbf{R} \rightarrow \mathbf{G}$ such that $\left.\psi\right|_{X}=\lambda$. Let $\varphi: \mathbf{F}_{X} \rightarrow \mathbf{G}$ be the homomorphism that extends λ and let $\psi=\left.\varphi\right|_{R}$. It suffices to show that $\varphi\left(\left[t_{1} t_{2} t_{3}\right]^{*}\right)=\left[\varphi\left(t_{1}\right) \varphi\left(t_{2}\right) \varphi\left(t_{3}\right)\right]^{\prime}$ for any $t_{1}, t_{2}, t_{3} \in R$. If $\left[t_{1} t_{2} t_{3}\right] \in R$, then $\left[t_{1} t_{2} t_{3}\right]^{*}=\left[t_{1} t_{2} t_{3}\right]$, and so, $\varphi\left(\left[t_{1} t_{2} t_{3}\right]^{*}\right)=\varphi\left(\left[t_{1} t_{2} t_{3}\right]\right)=$ $=\left[\varphi\left(t_{1}\right) \varphi\left(t_{2}\right) \varphi\left(t_{3}\right)\right]^{\prime}$. If $\left[t_{1} t_{2} t_{3}\right] \notin R$, then $\left[t_{1} t_{2} t_{3}\right]^{*}=\left[t_{3} t_{2} t_{1}\right]$, and so,

$$
\varphi\left(\left[t_{1} t_{2} t_{3}\right]^{*}\right)=\varphi\left(\left[t_{3} t_{2} t_{1}\right]\right)=\left[\varphi\left(t_{3}\right) \varphi\left(t_{2}\right) \varphi\left(t_{1}\right)\right]^{\prime}=[\mathbf{G} \in V]=\left[\varphi\left(t_{1}\right) \varphi\left(t_{2}\right) \varphi\left(t_{3}\right)\right]^{\prime} .
$$

Thus, we have proved the following
Theorem 2.1. The ternary groupoid $\left(R,[]^{*}\right)$ is V-free over X and has a canonical form.

3. A CHARACTERISATION OF FREE TERNARY SEMICOMMUTATIVE GROUPOIDS

We investigate some properties concerning the nonprime elements in $\left(R,[]^{*}\right)$ that are essential for introducing the notion of V-injectivity, and especially in which case the equality $\left[t_{1} t_{2} t_{3}\right]^{*}=\left[u_{1} u_{2} u_{3}\right]^{*}$ is fulfilled. By considering all the cases, one obtains:

Proposition 3.1. Let t be a nonprime element in ($R,[]^{*}$) and let $\left(t_{1}, t_{2}, t_{3}\right)$ be a triple of divisors of t in $\left(R,[]^{*}\right)$. Then $\left(u_{1}, u_{2}, u_{3}\right)$ is a triple of divisors of t if and only if $u_{2}=t_{2}$ and $\left\{u_{1}, u_{3}\right\}=\left\{t_{1}, t_{3}\right\}$.

Therefore, $t=\left[t_{1} t_{2} t_{3}\right] \in R$ has one triple of divisors $\left(t_{1}, t_{2}, t_{3}\right)$ if $t_{1}=t_{3}$ and
two triples of divisors $\left(t_{1}, t_{2}, t_{3}\right)$ and $\left(t_{3}, t_{2}, t_{1}\right)$ if $t_{1} \neq t_{3}$. The triple $\left(t_{1}, t_{2}, t_{3}\right)$ of divisors of t in $\left(R,[]^{*}\right)$ coincides with the triple $\left(t_{1}, t_{2}, t_{3}\right)$ in $(F,[])$. This is called the canonical triple of divisors in ($R,[]^{*}$).

By Prop.3.1. the equalities $\left[t_{1} t_{2} u\right]^{*}=\left[t_{1} t_{2} v\right]^{*}$ and $\left[u t_{2} t_{3}\right]^{*}=\left[v t_{2} t_{3}\right]^{*}$ are equivalent with $\left\{t_{1}, u\right\}=\left\{t_{1}, v\right\}$ and $\left\{u, t_{3}\right\}=\left\{v, t_{3}\right\}$, respectively, which implies that $u=v$. Also, $\left[t_{1} u t_{3}\right]^{*}=\left[t_{1} v t_{3}\right]^{*}$ implies that $u=v$. Therefore:

Proposition 3.2. The ternary groupoid $\left(R,[]^{*}\right)$ is left, right and middle cancellative.

We use Prop.3.1. to introduce the notion of V-injective ternary groupoid.

Definition 3.1. A ternary groupoid $\mathbf{H}=(H,[])$ is said to be V-injective if and only if $\mathbf{H} \in V$ and $\left[a_{1} a_{2} a_{3}\right]=\left[b_{1} b_{2} b_{3}\right] \Rightarrow a_{2}=b_{2} \wedge\left\{a_{1}, a_{3}\right\}=\left\{b_{1}, b_{3}\right\}$, for all $a_{i}, b_{i} \in H, i=1,2,3$.

By Prop.3.1 it follows that the V-canonical ternary groupoid $\left(R,[]^{*}\right)$ is V-injective. Every V-free ternary groupoid over X is isomorphic with ($R,[]^{*}$) and thus, the following proposition holds.

Proposition 3.3. Every V-free ternary groupoid over X is V-injective.
We will use the following lemma in the proof of Bruck Theorem for the variety V.

Lemma 3.1. Let $\mathbf{H}=(H,[])$ be V-injective ternary groupoid such that the set P of primes in \mathbf{H} is nonempty and generates \mathbf{H}. If $C_{0}=P$, $C_{1}=\left[C_{0} C_{0} C_{0}\right], \ldots, C_{k+1}=\left\{a \in H \backslash P:\left(d_{1}, d_{2}, d_{3}\right)\right.$ is a triple of divisors of $a \Rightarrow$
$\left.\Rightarrow\left\{d_{1}, d_{2}, d_{3}\right\} \subset C_{0} \cup \ldots \cup C_{k} \wedge\left\{d_{1}, d_{2}, d_{3}\right\} \cap C_{k} \neq \varnothing\right\}$,
then $H=\bigcup\left\{C_{k}: k \geq 0\right\}$, where $C_{k} \neq \varnothing$ for every $k \geq 0$, and $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$.

Proof. If $k=1$, then $a \in C_{2}$ if and only if $a=\left[d_{1} d_{2} d_{3}\right]$ for some d_{1}, d_{2}, $d_{3} \in C_{0} \cup C_{1}$ and at least one $d_{i} \in C_{1}$. Then [$d_{1} d_{2} d_{3}$] belongs to some of the sets $\left[C_{0} C_{0} C_{1}\right],\left[C_{0} C_{1} C_{0}\right],\left[C_{1} C_{0} C_{0}\right],\left[C_{0} C_{1} C_{1}\right],\left[C_{1} C_{0} C_{1}\right],\left[C_{1} C_{1} C_{0}\right]$, [$C_{1} C_{1} C_{1}$]. Therefore, $a \in C_{2}$ if and only if a is in the union of these sets, i.e. C_{2} equals to that union. Inductively, the set C_{k+1}, for any $k \geq 1$, is equal to the union of the sets $\left[C_{p} C_{q} C_{r}\right]$, where $p, q, r \in\{0,1, \ldots, k\}$ and at least one of the sets C_{p}, C_{q}, C_{r} is the set C_{k}. Hence, $C_{i} \cap C_{k+1}=\varnothing$. Therefore, $C_{i} \cap C_{j}=\varnothing$, for $i \neq j$. Since P generates \mathbf{H}, one can put $H=\bigcup_{k \geq 0} P_{k}$, where $P_{0}=P, P_{k+1}=P_{k} \cup\left[P_{k} P_{k} P_{k}\right]$. By induction on k one can show that $P_{k}=C_{0} \cup C_{1} \cup \ldots \cup C_{k}$. Hence, $H=\bigcup\left\{C_{k}: k \geq 0\right\}$, where $C_{k} \neq \varnothing$, for any $k \geq 0$, and $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$.

Theorem 3.1. (Bruck theorem for V) A semicommutative ternary groupoid \mathbf{H} is V-free if and only if \mathbf{H} is V-injective and the set P of prime elements in \mathbf{H} is nonempty and generates \mathbf{H}.

Proof. The "if part" follows directly from Prop.3.3 and the fact that $\mathbf{H} \cong \mathbf{R}$. For the "only if part" we use Lemma 3.1.: $H=\bigcup\left\{C_{k}: k \geq 0\right\}$. It remains to show that \mathbf{H} has the universal mapping property for V over P. Let $\mathbf{G}=\left(G,[]^{\prime}\right)$ be a semicommutative ternary groupoid and $\lambda: P \rightarrow G$ be a mapping. Define a sequence of mappings $\varphi_{k}: C_{k} \rightarrow G$ for $k \geq 0$, inductively by: $\varphi_{0}=\lambda$ and let $\varphi_{i}: C_{i} \rightarrow G$ be defined for every $i \leq k$. If $a \in C_{k+1}$ and $\left(d_{1}, d_{2}, d_{3}\right)$ is a triple of divisors of a, where $d_{1} \in C_{p}, d_{2} \in C_{q}, d_{3} \in C_{r}$, then $p, q, r \leq k$. Putting $\varphi_{k+1}\left(\left[d_{1} d_{2} d_{3}\right]\right)=\left[\varphi_{k}\left(d_{1}\right) \varphi_{k}\left(d_{2}\right) \varphi_{k}\left(d_{3}\right)\right]$ ', we obtain that $\varphi=\cup\left\{\varphi_{i}: i \geq 0\right\}$ is a mapping from H into G that is a homomorphism. If $a=\left[d_{1} d_{2} d_{3}\right] \in H$, then $\left(d_{1}, d_{2}, d_{3}\right)$ is a triple of divisors of a in \mathbf{H} and $\varphi(a)=\varphi\left(\left[d_{1} d_{2} d_{3}\right]\right)=\left[\varphi_{k}\left(d_{1}\right) \varphi_{k}\left(d_{2}\right) \varphi_{k}\left(d_{3}\right)\right]^{\prime}=\left[\varphi\left(d_{1}\right) \varphi\left(d_{2}\right) \varphi\left(d_{3}\right)\right]^{\prime}$. Since \mathbf{H} is V-injective it follows that $\left(d_{3}, d_{2}, d_{1}\right)$ is a triple of divisors of a as well and that $\varphi\left(\left[d_{3} d_{2} d_{1}\right]\right)=\left[\varphi\left(d_{3}\right) \varphi\left(d_{2}\right) \varphi\left(d_{1}\right)\right]^{\prime}=\left[G \in \mathcal{K}_{s c}\right]=\left[\varphi\left(d_{1}\right) \varphi\left(d_{2}\right) \varphi\left(d_{3}\right)\right]^{\prime}=$
$=\varphi\left(\left[d_{1} d_{2} d_{3}\right]\right)$. Thus, φ is a well defined mapping and a homomorphism. Hence, \mathbf{H} is V-free over P.

The class of V-injective ternary groupoids is wider than the class of V free groupoids, as the following example shows.

Let X be a countable set and let $\left(R,[]^{*}\right)$ be the V-canonical ternary groupoid over X. Define a set $H=\{t \in R:|P(t)|=1\} \subset R$, a set $D \subset H^{3}$ by $D=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in H^{3}: P\left(t_{i}\right) \neq P\left(t_{j}\right)\right.$ for a pair $\left.i, j \in\{1,2,3\}\right\}$ and a relation θ in D by $\left(t_{1}, t_{2}, t_{3}\right) \theta\left(u_{1}, u_{2}, u_{3}\right) \Leftrightarrow t_{2}=u_{2} \wedge\left\{t_{1}, t_{3}\right\}=\left\{u_{1}, u_{3}\right\}$. It is easy to show that θ is an equivalence relation in D. The equivalence class $\left(t_{1}, t_{2}, t_{3}\right)^{\theta}=\left\{\left(t_{1}, t_{2}, t_{3}\right),\left(t_{3}, t_{2}, t_{1}\right)\right\}$, when $t_{1} \neq t_{3}$ and $\left(t_{1}, t_{2}, t_{3}\right)^{\theta}=\left\{\left(t_{1}, t_{2}, t_{3}\right)\right\}$, when $t_{1}=t_{3}$. The set of θ-equivalent classes is denoted by D^{θ}. It has the same cardinality as the set X and thus, there is an injection $\psi: D^{\theta} \rightarrow X$.
Define an operation []' on H by: for $t_{1}, t_{2}, t_{3} \in H$,

$$
\left[t_{1} t_{2} t_{3}\right]^{\prime}=\left\{\begin{array}{l}
{\left[t_{1} t_{2} t_{3}\right]^{*}, \text { if } P\left(t_{1}\right)=P\left(t_{2}\right)=P\left(t_{3}\right)} \\
\psi\left(\left(t_{1}, t_{2}, t_{3}\right)^{\theta}\right), \text { if } P\left(t_{i}\right) \neq P\left(t_{j}\right), \text { for some pair } i, j \in\{1,2,3\} .
\end{array}\right.
$$

By a direct verification one can show that $\mathbf{H}=\left(H,[]^{\prime}\right)$ is a ternary groupoid that satisfies the conditions of Def.3.1. In the cases when the mapping ψ is an bijection, the set P of prime elements in \mathbf{H} is empty. By Thm.3.1, $\mathbf{H}=\left(H,[]^{\prime}\right)$ is not V-free. Hence:

Proposition 3.4. The class of V-free ternary groupoids is a proper subclass of the class of V-injective groupoids.

This shows that Thm.3.1. gives a proper characterization of the class of free semicommutative ternary groupoids by means of the class of V-injective groupoids.

The obtained results can be easily generalized for semicommutative n ary groupoids, i.e. n-ary groupoids defined by the identity $\left[x_{1} x_{2} \ldots x_{n-1} x_{n}\right] \approx\left[x_{n} x_{2} \ldots x_{n-1} x_{1}\right]$.

REFERENCES

[1] Borowiec A., Dudek W. A., Duplij S. A. (2001) Basic Concepts of Ternary Hopf Algebras, Journal of Kharkov National University, ser. Nuclei, Particles and Fields, 529, $\mathrm{N} 3(15)$, 21-29
[2] Bruck R. H. (1958) A Survey of Binary Systems, Berlin-GötingenHeidelberg, Springer-Verlag
[3] Jezek J. (2008) Universal Algebra, www.karlin.mff.cuni.cz/jezek
[4] Cupona G., Celakoski N., Markovski S., Dimovski D. (1988) Vector Valued Groupoids, Semigroups and Groups, Skopje, MANU

