Free Ternary Semicommutative Groupoids

Vesna Celakoska-Jordanova

Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje Republic of Macedonia

Abstract. Free objects in the variety V of ternary groupoids defined by the identity $[xyz] \approx [zyx]$, are described. A proper characterization of the class of V -free objects by means of the class of V -injective groupoids is obtained as well.

Key words: ternary semicommutative groupoid, free/injective ternary semicommutative groupoid.

1. INTRODUCTION AND PRELIMINARIES

An algebra with one ternary operation is called a *ternary groupoid* and is denoted by (G, []). A ternary groupoid (G, []) is *semicommutative* if [xyz] = [zyx] for all $x, y, z \in G$ ([1]). The class of ternary semicommutative groupoids is a variety defined by the identity $[xyz] \approx [zyx]$ and it is denoted by V. We will give a description of free objects in this variety using the absolutely free ternary groupoid $\mathbf{F}_{x} = (F, [])$.

For the sake of completeness we will briefly present the construction of the absolutely free ternary groupoid $\mathbf{F}_{X} = (F, [])$ that is a special case of the construction of an absolutely free (n,m)-groupoid over a nonempty set X, that does not contain the symbol [], for n=3 and m=1 ([4]). Let $F_{0}, F_{1}, ..., F_{p}, ...$ be a sequence of disjoint sets such that

$$\begin{split} F_0 &= X \ , \ F_1 = \{(x_1, x_2, x_3) \mid x_1, x_2, x_3 \in F_0\} , \dots, \\ F_{p+1} &= \{(t_1, t_2, t_3) \mid t_1, t_2, t_3 \in F_0 \cup F_1 \cup \dots \cup F_p \land (\exists i \in \{1, 2, 3\}) \ t_i \in F_p\} . \\ \text{If } t \in F_p \ , \text{ then we say that } t \ \text{has a } \textbf{hierarchy} \ p \ \text{ and denote it by } \mathcal{\chi}(t) . \\ \text{Put } F &= \bigcup \{F_p : p \ge 0\} \text{ and define a ternary operation } []: F^3 \to F \ \text{by:} \\ t_1, t_2, t_3 \in F \ \Rightarrow [t_1, t_2, t_3] = (t_1, t_2, t_3) . \end{split}$$

Then $\mathbf{F}_X = (F, [])$ is a ternary groupoid. The set X is the generating set for \mathbf{F}_X and \mathbf{F}_X has the universal mapping property for the class of ternary groupoids over X. Therefore, $\mathbf{F}_X = (F, [])$ is free over X in the class of ternary groupoids. The groupoid \mathbf{F}_X is *injective*, since the operation [] is an injective mapping, i.e. $[a_1, a_2, a_3] = [b_1, b_2, b_3] \Rightarrow a_1 = b_1, a_2 = b_2, a_3 = b_3$. The set X is the set of prime elements in \mathbf{F}_X . An element $u \in F$ is said to be *prime* in \mathbf{F}_X if and only if $u \neq [t_1, t_2, t_3]$ for all $t_1, t_2, t_3 \in F$. These two properties characterize all absolutely free ternary groupoids ([2], [3]).

Proposition 1.1. A ternary groupoid (H, []) is absolutely free if and only if (H, []) is injective and the set of primes in (H, []) is nonempty and generates (H, []).

We refer to this proposition as Bruck Theorem for the class of all ternary groupoids.

Define the *length* |t|, the set P(t) of **subterms** and the set var(t) of variables, for every $t \in F$, inductively in the following way:

$$t \in X \Rightarrow |t| = 1, \quad t = [t_1 t_2 t_3] \Rightarrow |t| = |t_1| + |t_2| + |t_3|,$$

$$t \in X \Rightarrow P(t) = \{t\}, \quad t = [t_1 t_2 t_3] \Rightarrow P(t) = \{t\} \cup P(t_1) \cup P(t_2) \cup P(t_3),$$

$$t \in X \Rightarrow var(t) = \{t\}, \quad t = [t_1 t_2 t_3] \Rightarrow var(t) = var(t_1) \cup var(t_2) \cup var(t_3).$$

2. A CONSTRUCTION OF CANONICAL OBJECTS IN V

A ternary semicommutative groupoid $\mathbf{R} = (R, []^*)$ is said to be *canonical* if the following conditions are satisfied:

(C0) $X \subseteq R \subseteq F$ and $t \in R \Rightarrow P(t) \subseteq R$;

- (C1) $[t_1t_2t_3] \in R \implies [t_1t_2t_3]^* = [t_1t_2t_3];$
- (C2) **R** is a V-free groupoid over X.

Define an ordering in F, denoted by \leq , in the following way. Let X be a linearly ordered set and $t, u \in F$. If $t, u \in X$, then $t \leq u$ in $F \Leftrightarrow t \leq u$ in X; if $\chi(t) < \chi(u)$, then $t \leq u$; if $\chi(t) = \chi(u) \geq 1$ and $t \neq u$, where $t = [t_1t_2t_3]$, $u = [u_1u_2u_3]$, then lexicographical ordering is used, with elements earlier in the lexicographical ordering coming first, i.e.

 $t < u \Leftrightarrow [t_1 < u_1 \lor (t_1 = u_1 \land t_2 < u_2)] \lor (t_1 = u_1 \land t_2 = u_2 \land t_3 < u_3)].$ By induction on hierarchy one can show that F_1 is a linearly order

By induction on hierarchy one can show that F is a linearly ordered set.

Define a set R by:

 $R = X \cup \{ t \in F \setminus X \mid [t_1 t_2 t_3] \in P(t) \implies t_1 \le t_3 \}.$ Proposition 2.1. a) $X \subset R \subset F$; $t \in R \implies P(t) \subseteq R$. b) $t_1, t_2, t_3 \in R \implies ([t_1 t_2 t_3] \notin R \Leftrightarrow t_3 < t_1)$. c) $t_1, t_2, t_3 \in F \implies ([t_1 t_2 t_3] \in R \Leftrightarrow t_1, t_2, t_3 \in R \land t_1 \le t_3)$.

Define a ternary operation $[]^*$ in *R* by:

$$t_1, t_2, t_3 \in R \implies [t_1 t_2 t_3]^* = \begin{cases} [t_1 t_2 t_3], & \text{if } t_1 \le t_3 \\ [t_3 t_2 t_1], & \text{if } t_3 < t_1. \end{cases}$$

By a direct verification one can show that $(R, []^*)$ is a ternary semicommutative groupoid, the set of prime elements in $(R, []^*)$ coincides with X and generates $(R, []^*)$. Also, $(R, []^*)$ has the universal mapping property for V over X. Namely, if $\mathbf{G} = (G, []') \in V$ and $\lambda : X \to G$ is a mapping, then there is a homomorphism $\psi : \mathbf{R} \to \mathbf{G}$ such that $\psi \mid_X = \lambda$. Let $\varphi : \mathbf{F}_X \to \mathbf{G}$ be the homomorphism that extends λ and let $\psi = \varphi \mid_R$. It suffices to show that $\varphi([t_1t_2t_3]^*) = [\varphi(t_1)\varphi(t_2)\varphi(t_3)]'$ for any $t_1, t_2, t_3 \in R$. If $[t_1t_2t_3] \in R$, then $[t_1t_2t_3]^* = [t_1t_2t_3]$, and so, $\varphi([t_1t_2t_3]^*) = \varphi([t_1t_2t_3]) = [\varphi(t_1)\varphi(t_2)\varphi(t_3)]'$. If $[t_1t_2t_3] \notin R$, then $[t_1t_2t_3]^* = [t_3t_2t_1]$, and so,

 $\varphi([t_1t_2t_3]^*) = \varphi([t_3t_2t_1]) = [\varphi(t_3)\varphi(t_2)\varphi(t_1)]' = [\mathbf{G} \in V] = [\varphi(t_1)\varphi(t_2)\varphi(t_3)]'.$ Thus, we have proved the following

Theorem 2.1. The ternary groupoid $(R, []^*)$ is V -free over X and has a canonical form.

3. A CHARACTERISATION OF FREE TERNARY SEMICOMMUTATIVE GROUPOIDS

We investigate some properties concerning the nonprime elements in $(R, []^*)$ that are essential for introducing the notion of *V*-injectivity, and especially in which case the equality $[t_1t_2t_3]^* = [u_1u_2u_3]^*$ is fulfilled. By considering all the cases, one obtains:

Proposition 3.1. Let *t* be a nonprime element in $(R, []^*)$ and let (t_1, t_2, t_3) be a triple of divisors of *t* in $(R, []^*)$. Then (u_1, u_2, u_3) is a triple of divisors of *t* if and only if $u_2 = t_2$ and $\{u_1, u_3\} = \{t_1, t_3\}$.

Therefore, $t = [t_1t_2t_3] \in R$ has one triple of divisors (t_1, t_2, t_3) if $t_1 = t_3$ and

two triples of divisors (t_1, t_2, t_3) and (t_3, t_2, t_1) if $t_1 \neq t_3$. The triple (t_1, t_2, t_3) of divisors of t in $(R, []^*)$ coincides with the triple (t_1, t_2, t_3) in (F, []). This is called the *canonical triple of divisors* in $(R, []^*)$.

By Prop.3.1. the equalities $[t_1t_2u]^* = [t_1t_2v]^*$ and $[ut_2t_3]^* = [vt_2t_3]^*$ are equivalent with $\{t_1, u\} = \{t_1, v\}$ and $\{u, t_3\} = \{v, t_3\}$, respectively, which implies that u = v. Also, $[t_1ut_3]^* = [t_1vt_3]^*$ implies that u = v. Therefore:

Proposition 3.2. The ternary groupoid $(R, []^*)$ is left, right and middle cancellative.

We use Prop.3.1. to introduce the notion of V-injective ternary groupoid.

Definition 3.1. A ternary groupoid $\mathbf{H} = (H, [])$ is said to be *V*-injective if and only if $\mathbf{H} \in V$ and $[a_1a_2a_3] = [b_1b_2b_3] \Rightarrow a_2 = b_2 \land \{a_1, a_3\} = \{b_1, b_3\}$, for all $a_i, b_i \in H$, i = 1, 2, 3.

By Prop.3.1 it follows that the *V* -canonical ternary groupoid $(R, []^*)$ is *V*-injective. Every *V*-free ternary groupoid over *X* is isomorphic with $(R, []^*)$ and thus, the following proposition holds.

Proposition 3.3. Every V -free ternary groupoid over X is V -injective.

We will use the following lemma in the proof of Bruck Theorem for the variety \boldsymbol{V} .

Lemma 3.1. Let $\mathbf{H} = (H, [])$ be *V*-injective ternary groupoid such that the set *P* of primes in **H** is nonempty and generates **H**. If $C_0 = P$, $C_1 = [C_0C_0C_0]$, ..., $C_{k+1} = \{a \in H \setminus P : (d_1, d_2, d_3) \text{ is a triple of divisors of } a \Rightarrow$

 $\Rightarrow \{d_1, d_2, d_3\} \subset C_0 \cup \ldots \cup C_k \land \{d_1, d_2, d_3\} \cap C_k \neq \emptyset\},\$

then $H = \bigcup \{C_k : k \ge 0\}$, where $C_k \ne \emptyset$ for every $k \ge 0$, and $C_i \cap C_j = \emptyset$ for $i \ne j$.

Proof. If k = 1, then $a \in C_2$ if and only if $a = [d_1d_2d_3]$ for some $d_1, d_2, d_3 \in C_0 \cup C_1$ and at least one $d_i \in C_1$. Then $[d_1d_2d_3]$ belongs to some of the sets $[C_0C_0C_1]$, $[C_0C_1C_0]$, $[C_1C_0C_0]$, $[C_0C_1C_1]$, $[C_1C_0C_1]$, $[C_1C_1C_0]$, $[C_1C_1C_1]$. Therefore, $a \in C_2$ if and only if a is in the union of these sets, i.e. C_2 equals to that union. Inductively, the set C_{k+1} , for any $k \ge 1$, is equal to the union of the sets $[C_pC_qC_r]$, where $p, q, r \in \{0, 1, \dots, k\}$ and at least one of the sets C_p , C_q , C_r is the set C_k . Hence, $C_i \cap C_{k+1} = \emptyset$. Therefore, $C_i \cap C_j = \emptyset$, for $i \ne j$. Since P generates \mathbf{H} , one can put $H = \bigcup_{k \ge 0} P_k$, where $P_0 = P$, $P_{k+1} = P_k \cup [P_kP_kP_k]$. By induction on k one can show that $P_k = C_0 \cup C_1 \cup \ldots \cup C_k$. Hence, $H = \bigcup \{C_k : k \ge 0\}$, where $C_k \ne \emptyset$, for any $k \ge 0$, and $C_i \cap C_j = \emptyset$ for $i \ne j$.

Theorem 3.1. (Bruck theorem for V) A semicommutative ternary groupoid **H** is V-free if and only if **H** is V-injective and the set P of prime elements in **H** is nonempty and generates **H**.

Proof. The "if part" follows directly from Prop.3.3 and the fact that $\mathbf{H} \cong \mathbf{R}$. For the "only if part" we use Lemma 3.1.: $H = \bigcup \{C_k : k \ge 0\}$. It remains to show that \mathbf{H} has the universal mapping property for V over P. Let $\mathbf{G} = (G, []')$ be a semicommutative ternary groupoid and $\lambda : P \to G$ be a mapping. Define a sequence of mappings $\varphi_k : C_k \to G$ for $k \ge 0$, inductively by: $\varphi_0 = \lambda$ and let $\varphi_i : C_i \to G$ be defined for every $i \le k$. If $a \in C_{k+1}$ and (d_1, d_2, d_3) is a triple of divisors of a, where $d_1 \in C_p$, $d_2 \in C_q$, $d_3 \in C_r$, then $p, q, r \le k$. Putting $\varphi_{k+1}([d_1d_2d_3]) = [\varphi_k(d_1)\varphi_k(d_2)\varphi_k(d_3)]'$, we obtain that $\varphi = \bigcup \{\varphi_i : i \ge 0\}$ is a mapping from H into G that is a homomorphism. If $a = [d_1d_2d_3] \in H$, then (d_1, d_2, d_3) is a triple of divisors of a and represent $(d_1)\varphi_k(d_2)\varphi(d_3)$. Since \mathbf{H} is V-injective it follows that (d_3, d_2, d_1) is a triple of divisors of a as well and that $\varphi([d_3d_2d_1]) = [\varphi(d_3)\varphi(d_2)\varphi(d_1)]' = [G \in \mathcal{K}_{sc}] = [\varphi(d_1)\varphi(d_2)\varphi(d_3)]' =$

 $= \varphi([d_1d_2d_3])$. Thus, φ is a well defined mapping and a homomorphism. Hence, **H** is *V*-free over *P*.

The class of V-injective ternary groupoids is wider than the class of V-free groupoids, as the following example shows.

Let X be a countable set and let $(R, []^*)$ be the V-canonical ternary groupoid over X. Define a set $H = \{t \in R : |P(t)| = 1\} \subset R$, a set $D \subset H^3$ by $D = \{(t_1, t_2, t_3) \in H^3 : P(t_i) \neq P(t_j) \text{ for a pair } i, j \in \{1, 2, 3\}\}$ and a relation θ in D by $(t_1, t_2, t_3) \theta (u_1, u_2, u_3) \Leftrightarrow t_2 = u_2 \land \{t_1, t_3\} = \{u_1, u_3\}$. It is easy to show that θ is an equivalence relation in D. The equivalence class $(t_1, t_2, t_3)^{\theta} = \{(t_1, t_2, t_3), (t_3, t_2, t_1)\}$, when $t_1 \neq t_3$ and $(t_1, t_2, t_3)^{\theta} = \{(t_1, t_2, t_3), (t_3, t_2, t_1)\}$, when $t_1 = t_3$. The set of θ -equivalent classes is denoted by D^{θ} . It has the same cardinality as the set X and thus, there is an injection $\psi : D^{\theta} \to X$. Define an operation []' on H by: for $t_1, t_2, t_3 \in H$,

$$[t_1 t_2 t_3]' = \begin{cases} [t_1 t_2 t_3]^*, & \text{if } P(t_1) = P(t_2) = P(t_3) \\ \psi((t_1, t_2, t_3)^{\theta}), & \text{if } P(t_i) \neq P(t_j), & \text{for some pair } i, j \in \{1, 2, 3\}. \end{cases}$$

By a direct verification one can show that $\mathbf{H} = (H, []')$ is a ternary groupoid that satisfies the conditions of Def.3.1. In the cases when the mapping ψ is an bijection, the set *P* of prime elements in **H** is empty. By Thm.3.1, $\mathbf{H} = (H, []')$ is not *V*-free. Hence:

Proposition 3.4. The class of V -free ternary groupoids is a proper subclass of the class of V -injective groupoids.

This shows that Thm.3.1. gives a proper characterization of the class of free semicommutative ternary groupoids by means of the class of V-injective groupoids.

The obtained results can be easily generalized for semicommutative *n*ary groupoids, i.e. *n*-ary groupoids defined by the identity $[x_1x_2...x_{n-1}x_n] \approx [x_nx_2...x_{n-1}x_1]$.

REFERENCES

- Borowiec A., Dudek W. A., Duplij S. A. (2001) Basic Concepts of Ternary Hopf Algebras, Journal of Kharkov National University, ser. Nuclei, Particles and Fields, 529, N 3(15), 21-29
- [2] Bruck R. H. (1958) *A Survey of Binary Systems*, Berlin-Götingen-Heidelberg, Springer-Verlag

- [3] Jezek J. (2008) Universal Algebra, www.karlin.mff.cuni.cz/jezek
- [4] Cupona G., Celakoski N., Markovski S., Dimovski D. (1988) *Vector Valued Groupoids, Semigroups and Groups*, Skopje, MANU