Section: INFORMATICS AND COMPUTER SYSTEMS, MATHEMATICS

FREE OBJECTS IN THE VARIETY OF GROUPOIDS DEFINED BY THE IDENTITY $x x^{(m)} \approx x^{(m+1)}$

Vesna Celakoska-Jordanova
Faculty of Natural Sciences and Mathematics, Skopje, Macedonia

Abstract

A construction of free objects in the variety $\mathcal{V}_{(m)}$ of groupoids defined by the identity $x x^{(m)} \approx x^{(m+1)}$, where m is a fixed positive integer, and (k) is a transformation of a groupoid $\boldsymbol{G}=(G, \cdot)$ defined by $x^{(0)}=x$, $x^{(k+1)}=\left(x^{(k)}\right)^{2}$, is given. A class of injective groupoids in $\mathcal{V}_{(m)}$ is defined and a corresponding Bruck theorem for this variety is proved. It is shown that the class of free groupoids in $\mathcal{V}_{(m)}$ is a proper subclass of the class of injective groupoids in $\mathcal{V}_{(m)}$.

AMS Mathematics Subject Classification 2000: 03C05, 08B20
Key words: groupoid, free groupoid, injective groupoid.

1. Preliminaries

Let $\boldsymbol{G}=(G, \cdot)$ be a groupoid, i.e. an algebra with one binary operation.
For any nonnegative integer k we define a transformation $(k): x \rightarrow x^{(k)}$ of G as follows:

$$
x^{(0)}=x, \quad x^{(k+1)}=\left(x^{(k)}\right)^{2} .
$$

(Here, x^{k} is defined by: $x^{1}=x, x^{k+1}=x^{k} x$; ex: $x^{4}=((x x) x) x$.)
We say that $x^{(k)}$ is the k square of x and $x^{(1)}=x^{2}$ the square of x.
By induction on p and q one can show ([2]) that in any groupoid $\boldsymbol{G}=(G, \cdot)$ $\left(x^{(p)}\right)^{(q)}=x^{(p+q)}$ for any $x \in G$ and any nonnegative integers p, q.

The variety of groupoids defined by the identity $x x^{(m)} \approx x^{(m+1)}$ will be denoted by $\mathcal{V}_{(m)}$, for a fixed positive integer m. (The variety $\mathcal{V}_{(1)}$ is investigated
in [3].)
If $\boldsymbol{G} \in \mathcal{V}_{(m)}$, then by induction on p, one obtains:

$$
(\forall x \in G, p \geq 0) x^{(p)} x^{(p+m)}=x^{(p+m+1)}
$$

An element $a \in G$ is said to be 2-primitive in G if and only if

$$
(\forall x \in G, p \geq 0)\left(a=x^{(p)} \Rightarrow p=0\right)
$$

In the sequel B will be an arbitrary nonempty set whose elements are called variables. By T_{B} we will denote the set of all groupoid terms over B in the signature \cdot. The terms are denoted by $t, u, v, \ldots, x, y, \ldots \boldsymbol{T}_{B}=\left(T_{B}, \cdot\right)$ is the absolutely free groupoid with the free basis B, where the operation is defined by $(u, v) \mapsto u v$. It is well known (Bruck theorem for $\left.\boldsymbol{T}_{B},[\mathbf{1}]\right)$ that the following two properties characterize \boldsymbol{T}_{B} :
(i) \boldsymbol{T}_{B} is injective, i.e. the operation $\cdot:(u, v) \mapsto u v$ is an injection.
(ii) The set B of primes in \boldsymbol{T}_{B} is nonempty and generates \boldsymbol{T}_{B}.
(An element a in a groupoid $\boldsymbol{G}=(G, \cdot)$ is said to be prime in \boldsymbol{G} if and only if $a \neq x y$, for any $x, y \in G$.)

For any term v of T_{B} we define the length $|v|$ of v and the set of subterms $P(v)$ of v in the following way:

$$
|b|=1,|t u|=|t|+|u| ; P(b)=\{b\}, P(t u)=\{t u\} \cup P(t) \cup P(u)
$$

for any variable b and any terms t, u of T_{B}.
Bellow we consider a few properties of $x^{(k)}$ in \boldsymbol{T}_{B} that can be shown by induction on p.

Proposition 1.1.. If $t, u \in T_{B}$ and p, q are nonnegative integers, then: a) $\left|t^{(p)}\right|=2^{p}|t|$. b) $t^{(p)}=u^{(p+q)} \Rightarrow t=u^{(q)}$.
c) If t, u are 2-primitive elements in T_{B}, then: $t^{(p)}=u^{(q)} \Leftrightarrow t=u, p=q$.

Proof. c) We assume that $p \leq q$, i.e. $q=p+k$, for any $k \geq 0$. Then from $t^{(p)}=u^{(q)}$ we have that $t^{(p)}=u^{(p+k)}$. By b) it follows that $t=u^{(k)}$. However, t is 2-primitive in \boldsymbol{T}_{B}, therefore $k=0$. Thus $t=u^{(0)}=u$, and $p=q$. The converse is obvious.

By Prop.1.1. c) it follows directly that:
Proposition 1.2.. For any $t \in T_{B}$, there is a unique 2-primitive term $\alpha \in T_{B}$ and a unique nonnegative integer p, such that $t=\alpha^{(p)}$.

We say that α is the 2 -base of t and p is the 2 -exponent of t; we denote them by $\underline{t}=\alpha,[t]=p$, respectively.

2. A construction of free objects in $\mathcal{V}_{(m)}$

Assuming that B is a nonempty set and $\boldsymbol{T}_{B}=\left(T_{B}, \cdot\right)$ the absolutely free groupoid with the free basis B, we are looking for a canonical groupoid ([4]) in $\mathcal{V}_{(m)}$, i.e. a groupoid $\boldsymbol{R}=(R, *)$ with the following properties:
i) $B \subset R \subset T_{B}$; ii) $t u \in R \Rightarrow t, u \in R$; iii) $t u \in R \Rightarrow t * u=t u$ iv) \boldsymbol{R} is a free groupoid in $\mathcal{V}_{(m)}$ with the free basis B.

Define the carrier R of the desired groupoid \boldsymbol{R} by:

$$
\begin{equation*}
R=\left\{t \in T_{B}:\left(\forall x \in T_{B}\right) x x^{(m)} \notin P(t)\right\} . \tag{2.1}
\end{equation*}
$$

The following properties of R are obvious corollaries of (2.1).
Proposition 2.1.. a) R satisfies i) and $i i$).
b) $t, u \in R \Rightarrow\left\{t u \notin R \Leftrightarrow u=t^{(m)}\right\}$.
c) $t, u \in T_{B} \Rightarrow\left\{t u \in R \Leftrightarrow t, u \in R \& u \neq t^{(m)}\right\}$.
d) $t \in R, p \geq 1 \Rightarrow t^{p} \in R, t^{(p)} \in R$.

We define an operation $*$ on R as follows.

$$
t, u \in R \Rightarrow t * u= \begin{cases}t u, & \text { if } t u \in R \tag{2.2}\\ t^{(m+1)}, & \text { if } u=t^{(m)}\end{cases}
$$

From (2.2) and Prop.2.1. d), by induction on p, we obtain:
e) $t \in R, p \geq 1 \Rightarrow t_{*}^{p}=t^{p}, t_{*}^{(p)}=t^{(p)}$, where t_{*}^{k} is defined by: $t_{*}=t, t_{*}^{k+1}=t_{*}^{k} * t$ and $t_{*}^{(p)}$ is the p square of t in \boldsymbol{R}.

By a direct verification one can show that the operation $*$ is well-defined, i.e. $\boldsymbol{R}=(R, *)$ is a groupoid. From (2.2) it follows that if $t u \in R$, then $t, u \in R \& t * u=t u$ (i.e. \boldsymbol{R} satisfies $i i$) and iii)). By the property e) and (2.2), we obtain that $t * t_{*}^{(m)}=t * t^{(m)}=t^{(m+1)}=t_{*}^{(m+1)}$, i.e. $\boldsymbol{R} \in \mathcal{V}_{(m)}$.

The set of primes in \boldsymbol{R} coincides with B and generates \boldsymbol{R}. Namely, every $b \in B$ is prime in \boldsymbol{R}, since $b \neq t * u$, for any $t, u \in R$. To show that no element of $R \backslash B$ is prime in \boldsymbol{R}, let $t \in T_{B} \backslash B$ be a term belonging to R. Then there are $t_{1}, t_{2} \in T_{B}$, such that $t=t_{1} t_{2}$. By the fact that $t \in R$, i.e. $t_{1} t_{2} \in R$, it follows that $t_{1}, t_{2} \in R$ and $t=t_{1} t_{2}=t_{1} * t_{2}$, i.e. t is not prime in \boldsymbol{R}. Let \boldsymbol{Q} be the subgroupoid of \boldsymbol{R} generated by $B, \boldsymbol{Q}=\langle B\rangle_{*}$. We will show that $R=Q$. Clearly, $Q \subseteq R$. To show that $R \subseteq Q$, let $t \in R$. If $t \in B$, then $t \in\langle B\rangle_{*}=Q$, i.e. $(t \in R \&|t|=1 \Rightarrow t \in Q)$. Suppose that $(t \in R \&|t| \leq k \Rightarrow t \in Q)$ is true. If $t \in R$ is such that $|t|=k+1$, then $t=t_{1} t_{2}$ in \boldsymbol{T}_{B} and $\left|t_{1}\right|,\left|t_{2}\right| \leq k$. By the inductive hypothesis we have $t_{1}, t_{2} \in Q$, and since \boldsymbol{Q} is a groupoid, it follows that $t=t_{1} t_{2}=t_{1} * t_{2} \in Q$. Thus, $R \subseteq Q$. Therefore, $\boldsymbol{R}=\boldsymbol{Q}=\langle B\rangle_{*}$.
\boldsymbol{R} has the universal mapping property ([5]) for $\mathcal{V}_{(m)}$ over B. Namely, let $\boldsymbol{G} \in \mathcal{V}_{(m)}, \lambda: B \rightarrow G$ be any mapping and $\varphi: T_{B} \rightarrow G$ be the homomorphism from \boldsymbol{T}_{B} into \boldsymbol{G} that extends λ. Let $t, u \in R$. If $t u \in R$, then $\varphi(t * u)=$ $\varphi(t u)=\varphi(t) \varphi(u)$. If $t u \notin R$, then $u=t^{(m)}$ and $t * u=t^{(m+1)}$. Using the fact that $\varphi\left(t^{(p)}\right)=(\varphi(t))^{(p)}$ (it can be shown by induction on p), we obtain that $\varphi(t * u)=\varphi\left(t^{(m+1)}\right)=\varphi\left(t^{(m)} t^{(m)}\right)=\varphi\left(t^{(m)}\right) \varphi\left(t^{(m)}\right)=(\varphi(t))^{(m)}(\varphi(t))^{(m)}=$ $(\varphi(t))^{(m+1)}=\varphi\left(t^{(m+1)}\right)=\left[\boldsymbol{G} \in \mathcal{V}_{(m)}\right]=\varphi\left(t t^{(m)}\right)=\varphi(t u)=\varphi(t) \varphi(u)$.

Thus, $\left.\varphi\right|_{R}: R \rightarrow G$ is a homomorphism that extends λ.
Therefore, the conditions i) $-i v$) at the begining of this section are fulfilled and thus we proved the following

Theorem 2.1.. The groupoid $\boldsymbol{R}=(R, *)$, defined by (2.1) and (2.2), is a canonical groupoid in $\mathcal{V}_{(m)}$ with a free basis B.

As a consequence of the property e) and the definition of 2-primitive element we obtain the following

Proposition 2.2.. For any $u \in R$, there are a unique 2-primitive element $t \in R$ and a unique positive integer p, such that $u=t_{*}^{(p)}=t^{(p)}$.

By a direct verification one can show that $(R, *)$ is a left cancellative groupoid. $(R, *)$ is not a right cancellative gropoid (ex: $t^{(1)} * t^{(m+1)}=t^{(m+2)}=t^{(m+1)} *$ $t^{(m+1)}$; however $\left.t^{(1)} \neq t^{(m+1)}\right)$.

The following proposition will be used in the next section.
Proposition 2.3.. Let $x \in R \backslash B$.
a) If x is a 2-primitive element in \boldsymbol{R} or $x=\alpha^{(p)}$, where $[\alpha]=0,1 \leq p \leq m$, then there is a unique pair $(u, v) \in R \times R$, such that $x=u * v$. (In that case
$x=u v$ and $\left.v \neq u^{(m)}.\right)$
We say that (u, v) is the pair of divisors of x in \boldsymbol{R}.
b) If $x=t^{(m+p+1)}, p \geq 0$, then $x=t^{(p+m)} * t^{(p+m)}=t^{(p)} * t^{(p+m)}$.

Thus $\left(t^{(p+m)}, t^{(p+m)}\right)$ and $\left(t^{(p)}, t^{(p+m)}\right)$ are pairs of divisors of x.

3. Injective objects in $\mathcal{V}_{(m)}$

In this Section we will give a characterization of the free groupoids in $\mathcal{V}_{(m)}$ by a wider class, called the class of injective groupoids $([4])$ in $\mathcal{V}_{(m)}$. For that purpose, we use the properties of the corresponding canonical groupoid $(R, *)$ in $\mathcal{V}_{(m)}$ previously constructed, that concern the non-prime elements in \boldsymbol{R}, i.e. elements of $R \backslash B$.

We say that a groupoid $\boldsymbol{H}=(H, \cdot)$ is injective in $\mathcal{V}_{(m)}$ (i.e. $\mathcal{V}_{(m)}$-injective) if and only if the following conditions are satisfied:
(0) $\boldsymbol{H} \in \mathcal{V}_{(m)}$
(1) For any $a \in H$, there is a unique 2-primitive element $c \in H$ and a unique nonnegative integer k, such that $a=c^{(k)}$.
(We say that c is the 2 -base of a and $k=[a]$ is the 2 -exponent of a.)
(2) If $a \in H$ is a non-prime 2-primitive element in \boldsymbol{H}, then there is a unique pair $(c, d) \in H \times H$ such that $a=c d$ and $(\underline{c} \neq \underline{d} \vee(\underline{d}=\underline{c} \&[d] \neq m))$.
(In that case we say that (c, d) is the pair of divisors of a (we write $(c, d) \mid a)$.) (3) If $a \in H$ is such that $a=c^{(1)},[c]=p, p \leq m-1$, then (c, c) is the pair of divisors of a.
(4) $a^{(p+m+1)}=c d \& p \geq 0 \Leftrightarrow\left[c=d=a^{(p+m)} \vee\left(c=a^{(p)} \quad \& d=a^{(p+m)}\right)\right]$.

From the definition of $\mathcal{V}_{(m)}$-injective groupoid and Prop.2.3. we obtain that
Proposition 3.1.. The class of free groupoids in $\mathcal{V}_{(m)}$ is a subclass of the class of $\mathcal{V}_{(m)}$-injective groupoids.

Theorem 3.1. (Bruck Theorem for $\left.\mathcal{V}_{(m)}\right)$. A groupoid \boldsymbol{H} is free in $\mathcal{V}_{(m)}$ if and only if \boldsymbol{H} satisfies the following two conditions:
(i) \boldsymbol{H} is $\mathcal{V}_{(m)}$-injective
(ii) The set P of primes in \boldsymbol{H} is nonempty and generates \boldsymbol{H}.

Proof. If \boldsymbol{H} is free in $\mathcal{V}_{(m)}$ with a free basis B, then by Prop.3.1., \boldsymbol{H} is $\mathcal{V}_{(m)}$-injective, and by the proof of Theorem 2.1., B is the set of primes in \boldsymbol{H} and generates \boldsymbol{H}.

For the converse, it suffices to show that \boldsymbol{H} has the universal mapping property for $\mathcal{V}_{(m)}$ over P. Therefore, define an infinite sequence of subsets C_{0}, C_{1}, \ldots of H by:

$$
C_{0}=P, C_{1}=C_{0} C_{0}=P P,
$$

$C_{k+1}=\left\{t \in H \backslash P:(c, d) \mid t \Rightarrow\{c, d\} \subseteq C_{0} \cup C_{1} \cup \cdots \cup C_{k} \quad \&\{c, d\} \cap C_{k} \neq \varnothing\right\}$.
Then the following statements are true ([4]):

1) $(\forall k \geq 0) C_{k} \neq \varnothing$;
2) $a \in C_{k} \Rightarrow(\forall p \in \mathbb{N}) a^{(p)} \in C_{k+p}, \quad k \geq 0$.
3) $p \neq q \Rightarrow C_{p} \cap C_{q}=\varnothing$;
4) $H=\bigcup\left\{C_{k}: k \geq 0\right\}$.

Let $G \in \mathcal{V}_{(m)}$ and $\lambda: P \rightarrow G$ be a mapping. For any nonnegative integer k define a mapping $\varphi_{k}: C_{k} \rightarrow G$ by $\varphi_{0}=\lambda$, and let φ_{i} be defined for each $i \leq k$. Let $a \in C_{k+1}$ and $(c, d) \mid a$ are such that $c \in C_{r}, d \in C_{s}$. Then $r, s \leq k$. If we put $\varphi_{k+1}(a)=\varphi_{r}(c) \varphi_{s}(d)$, then $\varphi=\bigcup\left\{\varphi_{i}: \quad i \geq 0\right\}$ is a well defined mapping from H into G. Also, by induction on k we have: $\varphi\left(a^{k}\right)=(\varphi(a))^{k}$ and $\varphi\left(a^{(k)}\right)=(\varphi(a))^{(k)}$, for each $a \in H$ and $k \geq 0$.

If $a \in H$ is a 2-primitive element of \boldsymbol{H} and $(c, d) \mid a$, then $\varphi(a)=\varphi(c) \varphi(d)$.
If $a \in H$ is such that $a=c^{(1)},[c]=p, p \leq m-1$, then $\varphi(a)=\varphi(c c)=$ $\varphi(c) \varphi(c)$.

If $c, d \in H$ are such that $c=d=a^{(p+m)}$, where $p \geq 0, a \in H$, then: $\varphi(c d)=\varphi\left(a^{(p+m+1)}\right)=\varphi\left(\left(a^{(p+m)}\right)^{(1)}\right)=\left(\varphi\left(a^{(p+m)}\right)\right)^{(1)}=\varphi(c) \varphi(d)$.

If $c, d \in H$ are such that $c=a^{(p)}, d=a^{(p+m)}$, where $p \geq 0, a \in H$, then:
$\varphi(c d)=\varphi\left(a^{(p+m+1)}\right)=\varphi\left(\left(a^{(p+m)}\right)^{(1)}\right)=\varphi\left(a^{(p+m)}\right)^{(1)}=\varphi(a)^{(p+m)} \varphi(a)^{(p+m)}=$ $\left(\varphi(a)^{(p)}\right)^{(m)}\left(\varphi(a)^{(p)}\right)^{(m)}=\left[\boldsymbol{G} \in \mathcal{V}_{(m)}\right]=(\varphi(a))^{(p)}(\varphi(a))^{(p+m)}=$ $=\varphi\left(a^{(p)}\right) \varphi\left(a^{(p+m)}\right)=\varphi(c) \varphi(d)$.

Thus, in all possible cases we have $\varphi(c d)=\varphi(c) \varphi(d)$, i.e. φ is a homomorphism from \boldsymbol{H} into \boldsymbol{G}. Therefore, \boldsymbol{H} is a free groupoid in $\mathcal{V}_{(m)}$ with a free basis P.

We will give an example of a $\mathcal{V}_{(m)}$-injective groupoid that is not free in $\mathcal{V}_{(m)}$. Let A be an infinite set and $H=A \times \mathbb{N}_{0}\left(\mathbb{N}_{0}\right.$ is the set of nonnegative integers). We will denote the elements of H by a_{n} instead of (a, n). Define a partial operation \bullet on H by:
(i) $a_{p} \bullet a_{p}=a_{p+1}$,
(ii) $a_{p} \bullet a_{p+m}=a_{p+m+1}$,
for any $p \geq 0$ and a fixed positive integer m.
Define a set $D \subseteq H \times H$ by:
$D=\left\{\left(a_{k}, b_{n}\right): a, b \in A \& k, n \in \mathbb{N}_{0} \&\right.$

$$
(a \neq b \vee(a=b \& k \neq p \& n \neq p \& n \neq p+m, p \geq 0))\}
$$

Since $D \sim A \times\{0\}$, there is an injection $\varphi: D \rightarrow A \times\{0\}$ and we can put
(iii) $\quad\left(\forall\left(a_{k}, b_{n}\right) \in D\right) a_{k} \bullet b_{n}=\left(\varphi\left(a_{k}, b_{n}\right)\right)_{0}$.

By a direct verification we obtain that (H, \bullet) is $\mathcal{V}_{(m)}$-injective groupoid. If φ is a bijection, then the set of primes in \boldsymbol{H}, i.e. $A \times\{0\} \backslash i m \varphi$, is empty. Therefore, by the Bruck Theorem for $\mathcal{V}_{(m)}$, it follows that (H, \bullet) is not free in $\mathcal{V}_{(m)}$. This and Prop.3.1. proves the following

Proposition 3.2.. The class of free groupoids in $\mathcal{V}_{(m)}$ is a proper subclass of the class of $\mathcal{V}_{(m)}$-injective groupoids.

References

[1] Bruck R.H., (1958) A Survey of Binary Systems, Berlin, Gottingen, Heidelberg, Germany, Springer-Verlag
[2] Celakoska-Jordanova V., (2004) Free groupoids with $x^{2} x^{2}=x^{3} x^{3}$, Mathematica Macedonica, Vol. 2, 9 - 17
[3] Čupona G., Celakoska-Jordanova V., (2000) On a Variety of Groupoids of Rank 1, Proc. of the II Congress of SMIM, Ohrid, Macedonia, $17-23$
[4] Čupona G., Celakoski N., Janeva B., (2000) Injective groupoids in some varieties of groupoids, Proc. of the II Congress of SMIM, Ohrid, Macedonia, 47 - 55
[5] McKenzie R.N., McNulty G.F., Taylor W.F., (1987) Algebras, Latices, Varieties, Volume I, Monterey, CA, Wadsworth \& Brooks/Cole

