Section: INFORMATICS AND COMPUTER SYSTEMS, MATHEMATICS

FREE OBJECTS IN THE VARIETY OF GROUPOIDS DEFINED BY THE IDENTITY $xx^{(m)} \approx x^{(m+1)}$

Vesna Celakoska-Jordanova Faculty of Natural Sciences and Mathematics, Skopje, Macedonia

ABSTRACT. A construction of free objects in the variety $\mathcal{V}_{(m)}$ of groupoids defined by the identity $xx^{(m)} \approx x^{(m+1)}$, where *m* is a fixed positive integer, and (*k*) is a transformation of a groupoid $\mathbf{G} = (G, \cdot)$ defined by $x^{(0)} = x$, $x^{(k+1)} = (x^{(k)})^2$, is given. A class of injective groupoids in $\mathcal{V}_{(m)}$ is defined and a corresponding Bruck theorem for this variety is proved. It is shown that the class of free groupoids in $\mathcal{V}_{(m)}$ is a proper subclass of the class of injective groupoids in $\mathcal{V}_{(m)}$.

AMS Mathematics Subject Classification 2000: 03C05, 08B20

Key words: groupoid, free groupoid, injective groupoid.

1. Preliminaries

Let $\mathbf{G} = (G, \cdot)$ be a groupoid, i.e. an algebra with one binary operation.

For any nonnegative integer k we define a transformation $(k): x \to x^{(k)}$ of G as follows:

$$x^{(0)} = x,$$
 $x^{(k+1)} = (x^{(k)})^2.$

(Here, x^k is defined by: $x^1 = x$, $x^{k+1} = x^k x$; ex: $x^4 = ((xx)x)x$.)

We say that $x^{(k)}$ is the k square of x and $x^{(1)} = x^2$ the square of x.

By induction on p and q one can show ([2]) that in any groupoid $\mathbf{G} = (G, \cdot)$ $(x^{(p)})^{(q)} = x^{(p+q)}$ for any $x \in G$ and any nonnegative integers p, q.

The variety of groupoids defined by the identity $xx^{(m)} \approx x^{(m+1)}$ will be denoted by $\mathcal{V}_{(m)}$, for a fixed positive integer m. (The variety $\mathcal{V}_{(1)}$ is investigated

ł

in [**3**].)

If $G \in \mathcal{V}_{(m)}$, then by induction on p, one obtains:

$$(\forall x \in G, p \ge 0) \ x^{(p)} x^{(p+m)} = x^{(p+m+1)}.$$

An element $a \in G$ is said to be 2-primitive in **G** if and only if

$$(\forall x \in G, p \ge 0) \ (a = x^{(p)} \Rightarrow p = 0).$$

In the sequel B will be an arbitrary nonempty set whose elements are called variables. By T_B we will denote the set of all groupoid terms over B in the signature \cdot . The terms are denoted by $t, u, v, \ldots, x, y, \ldots$ $T_B = (T_B, \cdot)$ is the absolutely free groupoid with the free basis B, where the operation is defined by $(u, v) \mapsto uv$. It is well known (Bruck theorem for T_B , [1]) that the following two properties characterize T_B :

(i) T_B is *injective*, i.e. the operation $\cdot : (u, v) \mapsto uv$ is an injection.

(*ii*) The set B of primes in T_B is nonempty and generates T_B .

(An element a in a groupoid $\mathbf{G} = (G, \cdot)$ is said to be *prime* in \mathbf{G} if and only if $a \neq xy$, for any $x, y \in G$.)

For any term v of T_B we define the *length* |v| of v and the *set of subterms* P(v) of v in the following way:

 $|b| = 1, |tu| = |t| + |u|; P(b) = \{b\}, P(tu) = \{tu\} \cup P(t) \cup P(u),$

for any variable b and any terms t, u of T_B .

Bellow we consider a few properties of $x^{(k)}$ in T_B that can be shown by induction on p.

PROPOSITION 1.1.. If $t, u \in T_B$ and p, q are nonnegative integers, then: a) $|t^{(p)}| = 2^p |t|$. b) $t^{(p)} = u^{(p+q)} \Rightarrow t = u^{(q)}$.

c) If t, u are 2-primitive elements in T_B , then: $t^{(p)} = u^{(q)} \Leftrightarrow t = u, p = q$.

Proof. c) We assume that $p \leq q$, i.e. q = p + k, for any $k \geq 0$. Then from $t^{(p)} = u^{(q)}$ we have that $t^{(p)} = u^{(p+k)}$. By b) it follows that $t = u^{(k)}$. However, t is 2-primitive in \mathbf{T}_B , therefore k = 0. Thus $t = u^{(0)} = u$, and p = q. The converse is obvious. \Box

By Prop.1.1. c) it follows directly that:

PROPOSITION 1.2.. For any $t \in T_B$, there is a unique 2-primitive term $\alpha \in T_B$ and a unique nonnegative integer p, such that $t = \alpha^{(p)}$. \Box

We say that α is the 2-base of t and p is the 2-exponent of t; we denote them by $\underline{t} = \alpha$, [t] = p, respectively.

2. A construction of free objects in $\mathcal{V}_{(m)}$

Assuming that B is a nonempty set and $\mathbf{T}_B = (T_B, \cdot)$ the absolutely free groupoid with the free basis B, we are looking for a *canonical groupoid* ([4]) in $\mathcal{V}_{(m)}$, i.e. a groupoid $\mathbf{R} = (R, *)$ with the following properties: i) $B \subset R \subset T_B$; ii) $tu \in R \Rightarrow t, u \in R$; iii) $tu \in R \Rightarrow t * u = tu$ iv) \mathbf{R} is a free groupoid in $\mathcal{V}_{(m)}$ with the free basis B.

Define the carrier R of the desired groupoid R by:

(2.1)
$$R = \{t \in T_B : (\forall x \in T_B) \ x x^{(m)} \notin P(t)\}.$$

The following properties of R are obvious corollaries of (2.1).

PROPOSITION 2.1.. a) R satisfies i) and ii).

b)
$$t, u \in R \Rightarrow \{tu \notin R \Leftrightarrow u = t^{(m)}\}$$
.
c) $t, u \in T_B \Rightarrow \{tu \in R \Leftrightarrow t, u \in R \& u \neq t^{(m)}\}.$
d) $t \in R, p \ge 1 \Rightarrow t^p \in R, t^{(p)} \in R.$

We define an operation * on R as follows.

(2.2)
$$t, u \in R \Rightarrow t * u = \begin{cases} tu, & \text{if } tu \in R \\ t^{(m+1)}, & \text{if } u = t^{(m)}. \end{cases}$$

From (2.2) and Prop.2.1. d), by induction on p, we obtain: e) $t \in R$, $p \ge 1 \Rightarrow t_*^p = t^p$, $t_*^{(p)} = t^{(p)}$, where t_*^k is defined by: $t_* = t$, $t_*^{k+1} = t_*^k * t$ and $t_*^{(p)}$ is the p square of t in \mathbf{R} .

By a direct verification one can show that the operation * is well-defined, i.e. $\mathbf{R} = (R, *)$ is a groupoid. From (2.2) it follows that if $tu \in R$, then $t, u \in R$ & t * u = tu (i.e. \mathbf{R} satisfies *ii*) and *iii*)). By the property e) and (2.2), we obtain that $t * t_*^{(m)} = t * t^{(m)} = t^{(m+1)} = t_*^{(m+1)}$, i.e. $\mathbf{R} \in \mathcal{V}_{(m)}$. The set of primes in \mathbf{R} coincides with B and generates \mathbf{R} . Namely, every $b \in B$ is prime in \mathbf{R} , since $b \neq t * u$, for any $t, u \in R$. To show that no element of $R \setminus B$ is prime in \mathbf{R} , let $t \in T_B \setminus B$ be a term belonging to R. Then there are $t_1, t_2 \in T_B$, such that $t = t_1t_2$. By the fact that $t \in R$, i.e. $t_1t_2 \in R$, it follows that $t_1, t_2 \in R$ and $t = t_1t_2 = t_1 * t_2$, i.e. t is not prime in \mathbf{R} . Let \mathbf{Q} be the subgroupoid of \mathbf{R} generated by B, $\mathbf{Q} = \langle B \rangle_*$. We will show that R = Q. Clearly, $Q \subseteq R$. To show that $R \subseteq Q$, let $t \in R$. If $t \in B$, then $t \in \langle B \rangle_* = Q$, i.e. $(t \in R \& |t| = 1 \Rightarrow t \in Q)$. Suppose that $(t \in R \& |t| \leq k \Rightarrow t \in Q)$ is true. If $t \in R$ is such that |t| = k + 1, then $t = t_1t_2$ in \mathbf{T}_B and $|t_1|, |t_2| \leq k$. By the inductive hypothesis we have $t_1, t_2 \in Q$. Therefore, $\mathbf{R} = \mathbf{Q} = \langle B \rangle_*$.

R has the universal mapping property ([5]) for $\mathcal{V}_{(m)}$ over *B*. Namely, let $\mathbf{G} \in \mathcal{V}_{(m)}, \lambda : B \to G$ be any mapping and $\varphi : T_B \to G$ be the homomorphism from \mathbf{T}_B into \mathbf{G} that extends λ . Let $t, u \in R$. If $tu \in R$, then $\varphi(t * u) = \varphi(t)\varphi(u)$. If $tu \notin R$, then $u = t^{(m)}$ and $t * u = t^{(m+1)}$. Using the fact that $\varphi(t^{(p)}) = (\varphi(t))^{(p)}$ (it can be shown by induction on p), we obtain that $\varphi(t * u) = \varphi(t^{(m+1)}) = \varphi(t^{(m)}t^{(m)}) = \varphi(t^{(m)})\varphi(t^{(m)}) = (\varphi(t))^{(m)}(\varphi(t))^{(m)} = (\varphi(t))^{(m+1)} = \varphi(t^{(m+1)}) = [\mathbf{G} \in \mathcal{V}_{(m)}] = \varphi(tt^{(m)}) = \varphi(tu) = \varphi(t)\varphi(u).$

Thus, $\varphi|_R : R \to G$ is a homomorphism that extends λ .

Therefore, the conditions i) - iv) at the beginning of this section are fulfilled and thus we proved the following

THEOREM 2.1.. The groupoid $\mathbf{R} = (R, *)$, defined by (2.1) and (2.2), is a canonical groupoid in $\mathcal{V}_{(m)}$ with a free basis B. \Box

As a consequence of the property e) and the definition of 2-primitive element we obtain the following

PROPOSITION 2.2.. For any $u \in R$, there are a unique 2-primitive element $t \in R$ and a unique positive integer p, such that $u = t_*^{(p)} = t^{(p)}$. \Box

By a direct verification one can show that (R, *) is a left cancellative groupoid. (R, *) is not a right cancellative groupoid (ex: $t^{(1)} * t^{(m+1)} = t^{(m+2)} = t^{(m+1)} * t^{(m+1)}$; however $t^{(1)} \neq t^{(m+1)}$).

The following proposition will be used in the next section.

PROPOSITION 2.3.. Let $x \in R \setminus B$.

a) If x is a 2-primitive element in **R** or $x = \alpha^{(p)}$, where $[\alpha] = 0, 1 \le p \le m$, then there is a unique pair $(u, v) \in R \times R$, such that x = u * v. (In that case

$$\begin{array}{l} x = uv \text{ and } v \neq u^{(m)}.) \\ \text{We say that } (u,v) \text{ is the pair of divisors of } x \text{ in } \boldsymbol{R}. \\ b) \text{ If } x = t^{(m+p+1)}, \ p \geq 0, \ then \ x = t^{(p+m)} * t^{(p+m)} = t^{(p)} * t^{(p+m)}. \\ \text{Thus } (t^{(p+m)}, t^{(p+m)}) \text{ and } (t^{(p)}, t^{(p+m)}) \text{ are pairs of divisors of } x. \end{array}$$

3. Injective objects in $\mathcal{V}_{(m)}$

In this Section we will give a characterization of the free groupoids in $\mathcal{V}_{(m)}$ by a wider class, called the class of injective groupoids ([4]) in $\mathcal{V}_{(m)}$. For that purpose, we use the properties of the corresponding canonical groupoid (R, *)in $\mathcal{V}_{(m)}$ previously constructed, that concern the non-prime elements in \mathbf{R} , i.e. elements of $R \setminus B$.

We say that a groupoid $\mathbf{H} = (H, \cdot)$ is *injective* in $\mathcal{V}_{(m)}$ (i.e. $\mathcal{V}_{(m)}$ -*injective*) if and only if the following conditions are satisfied:

(0) $\boldsymbol{H} \in \mathcal{V}_{(m)}$

(1) For any $a \in H$, there is a unique 2-primitive element $c \in H$ and a unique nonnegative integer k, such that $a = c^{(k)}$.

(We say that c is the 2-base of a and k = [a] is the 2-exponent of a.)

(2) If $a \in H$ is a non-prime 2-primitive element in H, then there is a unique pair $(c, d) \in H \times H$ such that a = cd and $(\underline{c} \neq \underline{d} \lor (\underline{d} = \underline{c} \& [d] \neq m))$.

(In that case we say that (c, d) is the *pair of divisors* of a (we write (c, d)|a).) (3) If $a \in H$ is such that $a = c^{(1)}$, [c] = p, $p \leq m - 1$, then (c, c) is the pair of divisors of a.

 $(4) \ a^{(p+m+1)} = cd \ \& \ p \ge 0 \ \Leftrightarrow [c = d = a^{(p+m)} \ \lor \ (c = a^{(p)} \ \& \ d = a^{(p+m)})].$

From the definition of $\mathcal{V}_{(m)}$ -injective groupoid and Prop.2.3. we obtain that

PROPOSITION 3.1.. The class of free groupoids in $\mathcal{V}_{(m)}$ is a subclass of the class of $\mathcal{V}_{(m)}$ -injective groupoids. \Box

THEOREM 3.1. (Bruck Theorem for $\mathcal{V}_{(m)}$). A groupoid \boldsymbol{H} is free in $\mathcal{V}_{(m)}$ if and only if \boldsymbol{H} satisfies the following two conditions: (i) \boldsymbol{H} is $\mathcal{V}_{(m)}$ -injective (ii) The set P of primes in \boldsymbol{H} is nonempty and generates \boldsymbol{H} .

Proof. If H is free in $\mathcal{V}_{(m)}$ with a free basis B, then by Prop.3.1., H is $\mathcal{V}_{(m)}$ -injective, and by the proof of Theorem 2.1., B is the set of primes in H and generates H.

For the converse, it suffices to show that H has the universal mapping property for $\mathcal{V}_{(m)}$ over P. Therefore, define an infinite sequence of subsets C_0, C_1, \ldots of H by:

$$C_0 = P, C_1 = C_0 C_0 = PP,$$

$$C_{k+1} = \{t \in H \setminus P : (c,d) | t \Rightarrow \{c,d\} \subseteq C_0 \cup C_1 \cup \cdots \cup C_k \& \{c,d\} \cap C_k \neq \emptyset \}.$$

Then the following statements are true ([4]):

1) $(\forall k \ge 0) \ C_k \ne \emptyset;$ 3) $p \ne q \Rightarrow C_p \cap C_q = \emptyset;$ 4) $H = \bigcup \{C_k : k \ge 0\}.$

Let $G \in \mathcal{V}_{(m)}$ and $\lambda : P \to G$ be a mapping. For any nonnegative integer k define a mapping $\varphi_k : C_k \to G$ by $\varphi_0 = \lambda$, and let φ_i be defined for each $i \leq k$. Let $a \in C_{k+1}$ and (c,d)|a are such that $c \in C_r$, $d \in C_s$. Then $r, s \leq k$. If we put $\varphi_{k+1}(a) = \varphi_r(c)\varphi_s(d)$, then $\varphi = \bigcup \{\varphi_i : i \geq 0\}$ is a well defined mapping from H into G. Also, by induction on k we have: $\varphi(a^k) = (\varphi(a))^k$ and $\varphi(a^{(k)}) = (\varphi(a))^{(k)}$, for each $a \in H$ and $k \geq 0$.

If $a \in H$ is a 2-primitive element of H and (c, d)|a, then $\varphi(a) = \varphi(c)\varphi(d)$. If $a \in H$ is such that $a = c^{(1)}$, [c] = p, $p \leq m - 1$, then $\varphi(a) = \varphi(cc) = \varphi(c)\varphi(c)$.

If $c, d \in H$ are such that $c = d = a^{(p+m)}$, where $p \ge 0$, $a \in H$, then: $\varphi(cd) = \varphi(a^{(p+m+1)}) = \varphi((a^{(p+m)})^{(1)}) = (\varphi(a^{(p+m)}))^{(1)} = \varphi(c)\varphi(d).$

If $c, d \in H$ are such that $c = a^{(p)}, d = a^{(p+m)}$, where $p \ge 0, a \in H$, then: $\varphi(cd) = \varphi(a^{(p+m+1)}) = \varphi((a^{(p+m)})^{(1)}) = \varphi(a^{(p+m)})^{(1)} = \varphi(a)^{(p+m)}\varphi(a)^{(p+m)} = (\varphi(a)^{(p)})^{(m)}(\varphi(a)^{(p)})^{(m)} = [\mathbf{G} \in \mathcal{V}_{(m)}] = (\varphi(a))^{(p)}(\varphi(a))^{(p+m)} = \varphi(a^{(p)})\varphi(a^{(p+m)}) = \varphi(c)\varphi(d).$

Thus, in all possible cases we have $\varphi(cd) = \varphi(c)\varphi(d)$, i.e. φ is a homomorphism from \boldsymbol{H} into \boldsymbol{G} . Therefore, \boldsymbol{H} is a free groupoid in $\mathcal{V}_{(m)}$ with a free basis P. \Box

We will give an example of a $\mathcal{V}_{(m)}$ -injective groupoid that is not free in $\mathcal{V}_{(m)}$. Let A be an infinite set and $H = A \times \mathbb{N}_0$ (\mathbb{N}_0 is the set of nonnegative integers). We will denote the elements of H by a_n instead of (a, n). Define a partial operation \bullet on H by:

(i) $a_p \bullet a_p = a_{p+1}$, (ii) $a_p \bullet a_{p+m} = a_{p+m+1}$, for any $p \ge 0$ and a fixed positive integer m. Define a set $D \subseteq H \times H$ by:

 $D = \{(a_k, b_n) : a, b \in A \& k, n \in \mathbb{N}_0 \& (a \neq b \lor (a = b \& k \neq p \& n \neq p \& n \neq p + m, p \ge 0))\}$ Since $D \sim A \times \{0\}$, there is an injection $\varphi : D \to A \times \{0\}$ and we can put

(iii) $(\forall (a_k, b_n) \in D) \ a_k \bullet b_n = (\varphi(a_k, b_n))_0.$

By a direct verification we obtain that (H, \bullet) is $\mathcal{V}_{(m)}$ -injective groupoid. If φ is a bijection, then the set of primes in H, i.e. $A \times \{0\} \setminus im\varphi$, is empty. Therefore, by the Bruck Theorem for $\mathcal{V}_{(m)}$, it follows that (H, \bullet) is not free in $\mathcal{V}_{(m)}$. This and Prop.3.1. proves the following

PROPOSITION 3.2.. The class of free groupoids in $\mathcal{V}_{(m)}$ is a proper subclass of the class of $\mathcal{V}_{(m)}$ -injective groupoids. \Box

References

- Bruck R.H., (1958) A Survey of Binary Systems, Berlin, Gottingen, Heidelberg, Germany, Springer-Verlag
- [2] Celakoska-Jordanova V., (2004) Free groupoids with $x^2x^2 = x^3x^3$, Mathematica Macedonica, Vol. 2, 9 – 17
- [3] Cupona G., Celakoska-Jordanova V., (2000) On a Variety of Groupoids of Rank 1, Proc. of the II Congress of SMIM, Ohrid, Macedonia, 17 – 23
- [4] Čupona G., Celakoski N., Janeva B., (2000) Injective groupoids in some varieties of groupoids, Proc. of the II Congress of SMIM, Ohrid, Macedonia, 47 – 55
- [5] McKenzie R.N., McNulty G.F., Taylor W.F., (1987) Algebras, Latices, Varieties, Volume I, Monterey, CA, Wadsworth & Brooks/Cole