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Abstract. A construction of free objects in the variety V(m) of groupoids

defined by the identity xx(m) ≈ x(m+1), where m is a fixed positive integer,

and (k) is a transformation of a groupoid G = (G, ·) defined by x(0) = x,

x(k+1) = (x(k))2, is given. A class of injective groupoids in V(m) is defined

and a corresponding Bruck theorem for this variety is proved. It is shown

that the class of free groupoids in V(m) is a proper subclass of the class of

injective groupoids in V(m).
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1. Preliminaries

Let G = (G, ·) be a groupoid, i.e. an algebra with one binary operation.
For any nonnegative integer k we define a transformation (k) : x

�

→ x(k) of
G as follows:

x(0) = x, x(k+1) = (x(k))2.

(Here, xk is defined by: x1 = x, xk+1 = xkx; ex: x4 = ((xx)x)x.)
We say that x(k) is the k square of x and x(1) = x2 the square of x.
By induction on p and q one can show ([2]) that in any groupoid G = (G, ·)

(x(p))(q) = x(p+q) for any x ∈ G and any nonnegative integers p, q.
The variety of groupoids defined by the identity xx(m) ≈ x(m+1) will be

denoted by V(m), for a fixed positive integer m. (The variety V(1) is investigated
81
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in [3].)
If G ∈ V(m), then by induction on p, one obtains:

(∀x ∈ G, p ≥ 0) x(p)x(p+m) = x(p+m+1).

An element a ∈ G is said to be 2-primitive in G if and only if

(∀x ∈ G, p ≥ 0) (a = x(p) ⇒ p = 0).

In the sequel B will be an arbitrary nonempty set whose elements are called
variables. By TB we will denote the set of all groupoid terms over B in the
signature ·. The terms are denoted by t, u, v, . . . , x, y, . . . TB = (TB , ·) is the
absolutely free groupoid with the free basis B, where the operation is defined
by (u, v) �→ uv. It is well known (Bruck theorem for TB , [1]) that the following
two properties characterize TB :
(i) TB is injective, i.e. the operation · : (u, v) �→ uv is an injection.
(ii) The set B of primes in TB is nonempty and generates TB .
(An element a in a groupoid G = (G, ·) is said to be prime in G if and only if
a 	= xy, for any x, y ∈ G.)

For any term v of TB we define the length | v | of v and the set of subterms
P (v) of v in the following way:

| b | = 1, | tu | = | t | + |u |; P (b) = {b}, P (tu) = {tu} ∪ P (t) ∪ P (u),

for any variable b and any terms t, u of TB .

Bellow we consider a few properties of x(k) in TB that can be shown by
induction on p.

Proposition 1.1.. If t, u ∈ TB and p, q are nonnegative integers, then:
a) | t(p) | = 2p| t |.
b) t(p) = u(p+q) ⇒ t = u(q).
c) If t, u are 2-primitive elements in TB, then: t(p) = u(q) ⇔ t = u, p = q.

Proof. c) We assume that p ≤ q, i.e. q = p + k, for any k ≥ 0. Then from
t(p) = u(q) we have that t(p) = u(p+k). By b) it follows that t = u(k). However,
t is 2-primitive in TB , therefore k = 0. Thus t = u(0) = u, and p = q. The
converse is obvious. �

By Prop.1.1. c) it follows directly that:

Proposition 1.2.. For any t ∈ TB, there is a unique 2-primitive term
α ∈ TB and a unique nonnegative integer p, such that t = α(p). �
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We say that α is the 2-base of t and p is the 2-exponent of t; we denote them by
t = α, [t] = p, respectively.

2. A construction of free objects in V(m)

Assuming that B is a nonempty set and TB = (TB , ·) the absolutely free
groupoid with the free basis B, we are looking for a canonical groupoid ([4]) in
V(m), i.e. a groupoid R = (R, ∗) with the following properties:
i) B ⊂ R ⊂ TB ; ii) tu ∈ R ⇒ t, u ∈ R; iii) tu ∈ R ⇒ t ∗ u = tu
iv) R is a free groupoid in V(m) with the free basis B.
Define the carrier R of the desired groupoid R by:

(2.1) R = {t ∈ TB : (∀x ∈ TB) xx(m) 	∈ P (t)}.
The following properties of R are obvious corollaries of (2.1).

Proposition 2.1.. a) R satisfies i) and ii).

b) t, u ∈ R ⇒ {tu 	∈ R ⇔ u = t(m)} .

c) t, u ∈ TB ⇒ {tu ∈ R ⇔ t, u ∈ R & u 	= t(m)}.

d) t ∈ R, p ≥ 1 ⇒ tp ∈ R, t(p) ∈ R. �

We define an operation ∗ on R as follows.

(2.2) t, u ∈ R ⇒ t ∗ u =
{

tu, if tu ∈ R
t(m+1), if u = t(m).

From (2.2) and Prop.2.1. d), by induction on p, we obtain:
e) t ∈ R, p ≥ 1 ⇒ tp∗ = tp, t

(p)
∗ = t(p),

where tk∗ is defined by: t∗ = t, tk+1
∗ = tk∗ ∗ t and t

(p)
∗ is the p square of t in R.

By a direct verification one can show that the operation ∗ is well-defined,
i.e. R = (R, ∗) is a groupoid. From (2.2) it follows that if tu ∈ R, then
t, u ∈ R & t ∗ u = tu (i.e. R satisfies ii) and iii)). By the property e) and
(2.2), we obtain that t ∗ t

(m)
∗ = t ∗ t(m) = t(m+1) = t

(m+1)
∗ , i.e. R ∈ V(m).
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The set of primes in R coincides with B and generates R. Namely, every
b ∈ B is prime in R, since b 	= t ∗ u, for any t, u ∈ R. To show that no element
of R \ B is prime in R, let t ∈ TB \ B be a term belonging to R. Then there
are t1, t2 ∈ TB , such that t = t1t2. By the fact that t ∈ R, i.e. t1t2 ∈ R, it
follows that t1, t2 ∈ R and t = t1t2 = t1 ∗ t2, i.e. t is not prime in R. Let Q be
the subgroupoid of R generated by B, Q = 〈B 〉∗. We will show that R = Q.
Clearly, Q ⊆ R. To show that R ⊆ Q, let t ∈ R. If t ∈ B, then t ∈ 〈B 〉∗ = Q,
i.e. (t ∈ R & | t | = 1 ⇒ t ∈ Q). Suppose that (t ∈ R & | t | ≤ k ⇒ t ∈ Q) is
true. If t ∈ R is such that | t | = k + 1, then t = t1t2 in TB and | t1 |, | t2 | ≤ k.
By the inductive hypothesis we have t1, t2 ∈ Q, and since Q is a groupoid, it
follows that t = t1t2 = t1 ∗ t2 ∈ Q. Thus, R ⊆ Q. Therefore, R = Q = 〈B 〉∗.

R has the universal mapping property ([5]) for V(m) over B. Namely, let
G ∈ V(m), λ : B → G be any mapping and ϕ : TB → G be the homomorphism
from TB into G that extends λ. Let t, u ∈ R. If tu ∈ R, then ϕ(t ∗ u) =
ϕ(tu) = ϕ(t)ϕ(u). If tu 	∈ R, then u = t(m) and t ∗ u = t(m+1). Using the fact
that ϕ(t(p)) = (ϕ(t))(p) (it can be shown by induction on p), we obtain that
ϕ(t ∗ u) = ϕ(t(m+1)) = ϕ(t(m)t(m)) = ϕ(t(m))ϕ(t(m)) = (ϕ(t))(m)(ϕ(t))(m) =
(ϕ(t))(m+1) = ϕ(t(m+1)) = [G ∈ V(m)] = ϕ(tt(m)) = ϕ(tu) = ϕ(t)ϕ(u).

Thus, ϕ|R : R → G is a homomorphism that extends λ.
Therefore, the conditions i) - iv) at the begining of this section are fulfilled

and thus we proved the following

Theorem 2.1.. The groupoid R = (R, ∗), defined by (2.1) and (2.2), is a
canonical groupoid in V(m) with a free basis B. �

As a consequence of the property e) and the definition of 2-primitive element
we obtain the following

Proposition 2.2.. For any u ∈ R, there are a unique 2-primitive element
t ∈ R and a unique positive integer p, such that u = t

(p)
∗ = t(p). �

By a direct verification one can show that (R, ∗) is a left cancellative groupoid.
(R, ∗) is not a right cancellative gropoid (ex: t(1) ∗ t(m+1) = t(m+2) = t(m+1) ∗
t(m+1); however t(1) 	= t(m+1)).

The following proposition will be used in the next section.

Proposition 2.3.. Let x ∈ R \ B.
a) If x is a 2-primitive element in R or x = α(p), where [α] = 0, 1 ≤ p ≤ m,
then there is a unique pair (u, v) ∈ R × R, such that x = u ∗ v. (In that case
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x = uv and v 	= u(m).)
We say that (u, v) is the pair of divisors of x in R.

b) If x = t(m+p+1), p ≥ 0, then x = t(p+m) ∗ t(p+m) = t(p) ∗ t(p+m).
Thus (t(p+m), t(p+m)) and (t(p), t(p+m)) are pairs of divisors of x. �

3. Injective objects in V(m)

In this Section we will give a characterization of the free groupoids in V(m)

by a wider class, called the class of injective groupoids ([4]) in V(m). For that
purpose, we use the properties of the corresponding canonical groupoid (R, ∗)
in V(m) previously constructed, that concern the non-prime elements in R, i.e.
elements of R \ B.

We say that a groupoid H = (H, ·) is injective in V(m) (i.e. V(m)-injective)
if and only if the following conditions are satisfied:

(0) H ∈ V(m)

(1) For any a ∈ H, there is a unique 2-primitive element c ∈ H and a unique
nonnegative integer k, such that a = c(k).

(We say that c is the 2-base of a and k = [a] is the 2-exponent of a.)
(2) If a ∈ H is a non-prime 2-primitive element in H , then there is a unique

pair (c, d) ∈ H × H such that a = cd and (c 	= d ∨ (d = c & [d] 	= m)).
(In that case we say that (c, d) is the pair of divisors of a (we write (c, d)|a).)

(3) If a ∈ H is such that a = c(1), [c] = p, p ≤ m − 1, then (c, c) is the pair of
divisors of a.
(4) a(p+m+1) = cd & p ≥ 0 ⇔ [c = d = a(p+m) ∨ (c = a(p) & d = a(p+m))].

From the definition of V(m)-injective groupoid and Prop.2.3. we obtain that

Proposition 3.1.. The class of free groupoids in V(m) is a subclass of the
class of V(m)-injective groupoids. �

Theorem 3.1. (Bruck Theorem for V(m)). A groupoid H is free in V(m) if
and only if H satisfies the following two conditions:
(i) H is V(m)-injective
(ii) The set P of primes in H is nonempty and generates H.

Proof. If H is free in V(m) with a free basis B, then by Prop.3.1., H is
V(m)-injective, and by the proof of Theorem 2.1., B is the set of primes in H
and generates H .
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For the converse, it suffices to show that H has the universal mapping
property for V(m) over P . Therefore, define an infinite sequence of subsets
C0, C1, . . . of H by:

C0 = P , C1 = C0C0 = PP ,
Ck+1 = {t ∈ H \P : (c, d)|t ⇒ {c, d} ⊆ C0 ∪C1 ∪ · · · ∪Ck & {c, d}∩Ck 	= ∅}.
Then the following statements are true ([4]):
1) (∀k ≥ 0) Ck 	= ∅; 2) a ∈ Ck ⇒ (∀p ∈ N) a(p) ∈ Ck+p, k ≥ 0.
3) p 	= q ⇒ Cp ∩ Cq = ∅; 4) H =

⋃{Ck : k ≥ 0}.
Let G ∈ V(m) and λ : P → G be a mapping. For any nonnegative integer

k define a mapping ϕk : Ck → G by ϕ0 = λ, and let ϕi be defined for each
i ≤ k. Let a ∈ Ck+1 and (c, d)|a are such that c ∈ Cr, d ∈ Cs. Then r, s ≤ k.
If we put ϕk+1(a) = ϕr(c)ϕs(d), then ϕ =

⋃{ϕi : i ≥ 0} is a well defined
mapping from H into G. Also, by induction on k we have: ϕ(ak) = (ϕ(a))k and
ϕ(a(k)) = (ϕ(a))(k), for each a ∈ H and k ≥ 0.

If a ∈ H is a 2-primitive element of H and (c, d)|a, then ϕ(a) = ϕ(c)ϕ(d).
If a ∈ H is such that a = c(1), [c] = p, p ≤ m − 1, then ϕ(a) = ϕ(cc) =

ϕ(c)ϕ(c).
If c, d ∈ H are such that c = d = a(p+m), where p ≥ 0, a ∈ H, then:

ϕ(cd) = ϕ(a(p+m+1)) = ϕ((a(p+m))(1)) = (ϕ(a(p+m)))(1) = ϕ(c)ϕ(d).
If c, d ∈ H are such that c = a(p), d = a(p+m), where p ≥ 0, a ∈ H, then:

ϕ(cd) = ϕ(a(p+m+1)) = ϕ((a(p+m))(1)) = ϕ(a(p+m))(1) = ϕ(a)(p+m)ϕ(a)(p+m) =
(ϕ(a)(p))(m)(ϕ(a)(p))(m) = [G ∈ V(m)] = (ϕ(a))(p)(ϕ(a))(p+m) =
= ϕ(a(p))ϕ(a(p+m)) = ϕ(c)ϕ(d).

Thus, in all possible cases we have ϕ(cd) = ϕ(c)ϕ(d), i.e. ϕ is a homomor-
phism from H into G. Therefore, H is a free groupoid in V(m) with a free basis
P . �

We will give an example of a V(m)-injective groupoid that is not free in
V(m). Let A be an infinite set and H = A × N0 (N0 is the set of nonnegative
integers). We will denote the elements of H by an instead of (a, n). Define a
partial operation • on H by:

(i) ap • ap = ap+1, (ii) ap • ap+m = ap+m+1,
for any p ≥ 0 and a fixed positive integer m.

Define a set D ⊆ H × H by:
D = {(ak, bn) : a, b ∈ A & k, n ∈ N0 &

(a 	= b ∨ (a = b & k 	= p & n 	= p & n 	= p+m, p ≥ 0))}
Since D ∼ A × {0}, there is an injection ϕ : D → A × {0} and we can put
(iii) (∀(ak, bn) ∈ D) ak • bn = (ϕ(ak, bn))0.
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By a direct verification we obtain that (H, •) is V(m)-injective groupoid. If ϕ is
a bijection, then the set of primes in H , i.e. A×{0}\ imϕ, is empty. Therefore,
by the Bruck Theorem for V(m), it follows that (H, •) is not free in V(m). This
and Prop.3.1. proves the following

Proposition 3.2.. The class of free groupoids in V(m) is a proper subclass
of the class of V(m)-injective groupoids. �
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[3] Čupona G., Celakoska-Jordanova V., (2000) On a Variety of Groupoids of Rank 1, Proc.

of the II Congress of SMIM, Ohrid, Macedonia, 17 – 23
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