
EDUCacheIC: Interactive and Collaborative
Successor of the EDUCache Simulator

Sasko Ristov, Blagoj Atanasovski, Marjan Gusev, and Nenad Anchev
Ss. Cyril and Methodius University

Faculty of Information Sciences and Computer Engineering,
Rugjer Boshkovik 16, PO Box 393,

1000 Skopje, Macedonia
Email: sashko.ristov@finki.ukim.mk, blagoj.atanasovski@gmail.com,

marjan.gushev@finki.ukim.mk, nenad ancev@hotmail.com

Abstract—Introducing our EDUCache simulator [1] in the
Computer Architecture and Organization course increased the
students willingness to learn more details about CPU cache
memory. A positive experience of students interest to work on
laboratory exercises with our EDUCache simulator lead us to
develop an EDUCacheIC, a new interactive and collaborative
version of EDUCache simulator. EDUCacheIC offers the students
to work in a group with one student member of the group
having a role as a teacher. The student - teacher creates a
CPU architecture and tasks for other students in the group.
This interactive and collaborative simulator will improve the
learning and teaching process of the Computer Architecture and
Organization course reducing the teacher’s efforts during the
laboratory exercises.

Index Terms—Cache; Computer Architecture and Organization;
CPU; Education; Multiprocessor.

I. INTRODUCTION

The Computer Architecture and Organization course is
usually in the first or second study year and is an important
area in the undergraduate computer science (CS) curricula
[2]. Teaching the computer architecture fundamentals is a
very difficult process which requires a lot of effort from
both teachers and students. Introducing an appropriate visual
simulator can significantly lighten the teaching process and
increase the students’ interest in hardware courses. There are
a lot of visual simulators to support the learning of the basic
concepts in computer organization. However, none of them
covers all topics in computer architecture and organization [3].
Some of the simulators are focused on education, while the
others on data profiling.

Since we have not found any available simulator in the
literature and on Internet, designed to teach the students about
concepts of the cache memory, hierarchy and organization,
cache size, cache line, cache associativity, etc, we have re-
cently developed the EDUCache simulator [1] which visually
presents cache hits and misses, cache line fulfillment, and
cache associativity problem. It allows the students to design
their own CPU with different cache hierarchy defined with
appropriate levels (L1 to L3), various configuration of cache
owners, i.e. either private cache per core or shared among
several or all CPU cores, various cache size, realization of
the n-way cache set associativity, cache line sizes, and cache

replacement policy, with ability for applying different cache
replacement policies per different cache levels.

We have also developed hands-on exercises to support the
students using EDUCache simulator [4], including several case
studies with examples how to use the EDUCache simulator in
the learning process.

Despite the positive experience of introducing the EDU-
Cache simulator in the laboratory exercises, we have observed
that EDUCache simulator is not collaborative. That is, each
student works with its own desktop application, generates its
own CPU and executes the examples. This was the motivation
to develop a new interactive and collaborative EDUCacheIC
simulator. It is a client-server based simulator which allows
the students to learn the CPU architecture and organization in
a team. One student of a team works as a teacher (student -
teacher) and creates particular CPU (multi-core multiproces-
sor) in the simulator. After that, the other members of the
team execute different trace files according to their particular
tasks scheduled by the student - teacher. Now the students’
trace files compete for the core and they can analyze the
parallel execution of trace files, thus simulating the concurrent
execution of several processes.

Nowadays, the teachers should give more attention to
the multi-core processors architecture and organization [5].
The most important additional feature of the EDUCacheIC
simulator is the simulation of CPU cache memory while
multi tasking memory trace is executed with different CPU
affinity, i.e., binding or unbinding a particular process with
one or several CPU cores. Each student can execute one or
more processes, each with particular number of threads and
particular CPU AFFINITY .

This feature of the EDUCacheIC simulator will not only
increase the student knowledge about the multi-core multipro-
cessor’s architecture and organization, but it will also increase
their knowledge in software performance engineering, that is,
they can easily improve and optimize their software programs
for other software courses.

The rest of the paper is organized as follows. Section II
explains main features of the predecessor, i.e., the EDUCache
simulator and the architecture and features of its successor, the
interactive and collaborative EDUCacheIC simulator. Related

work about the simulators used in education, especially in
computer architecture and organization is presented in Sec-
tion III. The final Section IV concludes our work and present
our plans for future work.

II. EDUCACHEIC SIMULATOR ARCHITECTURE

This section describes the EDUCacheIC Simulator, the
inherited features of its predecessor, the EDUCache simulator,
as well as the new features, roles and user interface.

A. Inherited Features from the Predecessor (EDUCache)
The EDUCacheIC simulator was built as an extension of the

predecessor, the EDUCache simulator. It uses all the function-
alities of EDUCache simulator and the underlying simulation
architecture has not been changed. The implementation is also
in the Java programming language. The simulation architecture
represents a simple mapping of every CPU cache memory pa-
rameter to a specific object described by a class. The students
create the CPU cache memory architecture by specifying the
required parameters (the number of cores, cache levels, cache
set associativity, cache replacement policies, cache size, cache
line etc) and combining the elements together.

The construction begins with creating separate cache levels.
The students can configure various cache level parameters:
cache memory size, cache line size, cache associativity and
replacement policy. Then the cache levels are combined in
a CPU core specifying which instance of the created cache
levels belongs to which CPU core, providing the ability to
create private or shared cache levels. Each core can have
private or shared cache on different cache levels (generally
L1 to L3). Most of today’s modern multiprocessors have
private L1 and L2 caches, while L3 cache is shared. The
simulation is executed by creating address trace files. These
files contain the sequence of main memory addresses being
accessed by each CPU core and are subsequently read from
the cache. A memory address is either found in the cache
memory generating cache hit, or it is not found in the cache
and loaded from the lower cache level or main memory, thus
generating cache miss.

While executing the EDUCache simulator collects the num-
ber of cache hits and misses for each CPU cache level and
the number of cache hits and misses per core. The data are
used in the students analysis of different cache level behavior
in each core. The configuration of the simulator can be read
from previously saved files.

B. Description of New Roles
EDUCacheIC does not change the functionalities of its

predecessor; it represents the added features that allow the
students to collaborate among each other in groups during
the laboratory exercises also improving the interactivity of
the exercises. Before we go into explaining workflow of the
new functionalities, we will introduce four new roles of the
EDUCacheIC simulator:

• Student-teacher: a student responsible for creating a CPU
architecture with a specified number of cores and cache
levels with specified parameters;

Server

Student-worker21

Student-worker1n

Student-Teacher G1

Student-worker11...

Student-worker2m

...

Student-Teacher G2

Fig. 1. EDUCacheIC architecture

• Student-worker: a student responsible for creating a trace
file of memory addresses to be read by the CPU archi-
tecture created by the student-teacher;

• Master-program: an instance of EDUCacheIC started on
the student-teacher’s computer (server). It is responsible
to schedule the commands given by the student-workers
on the architecture created by the student-teacher of a
student’s group. It also broadcasts the commands to other
worker-programs in order to simulate the execution to the
students; and

• Worker-program: an instance of EDUCacheIC started on
the student-worker’s computer. It logs in to a master-
program and sends the commands to be executed on the
architecture that is created by the student-teacher. It also
listens for broadcasts that are sent by the master-program
of the same student group.

C. Description of New Features

Apart of the predecessor functionalities, EDUCacheIC has
new additional features and allows the students to collaborate
among each other in groups during the laboratory exercises.

Figure 1 depicts the new main feature ”collaboration” of
EDUCacheIC compared to its predecessor, i.e., a group of
students creates a team. A student-teacher (one student of a
group) creates a CPU with one or multiple cores together
with their cache memory architecture. Each student-worker
of the group is required to create its own trace file. The
trace file represents the commands (memory addresses) that
will be executed on the already created CPU by the student-
teacher. The student-workers connect their worker-programs
to the master-program of the student-teacher.

The master-program and all connected worker-programs
represent a single computer and several processes, and not
a distributed system. The traces executed by the worker-
programs are programs stored in a single continuous memory
space executed on the CPU created by the student-teacher in
the master-program.

At the beginning, the worker-programs register themselves
at the master-program and wait for the student-teacher to create
the CPU cache architecture. When all the parameters are set,
the student-workers can create and set their trace files. The
trace files can contain an arbitrary number of commands. The
commands contain information about which main memory
address should be accessed and the CPUAFFINITY , that
is, which core of the CPU should execute them. Depending
of the settings of the student-worker, the commands in their
trace file can be executed with an absolute or relative affinity.
In absolute affinity, the student-worker must specify explicitly
which core (or cores) of the CPU must execute the commands
with the ID of the core. In relative affinity, the student-worker
specifies only an arbitrary core ID that needs to execute the
commands. In the case of relative affinity, the student-teacher
chooses which core is to execute the commands. In a single
trace file, all commands must have only one type of affinity
specified.

When all the trace files are submitted, the student-teacher
assigns CPU cores to all the trace files with relative affinity
and assigns a position to all workers in the command-queue.
The top of the command-queue shows the next command in
line that will be executed by the CPU. One by one command
from each of the registered student-workers is executed in a
round-robin fashion. Master program broadcasts a notification
to all registered worker-programs containing which command
is executed (which main memory address was read and which
core of the CPU executes the command). The execution ends
when all commands from all trace files are finished.

Although this type of scheduling is not practically imple-
mented in any real computer systems (operating systems),
we have implemented it in this way since the focus is on
learning the CPU and its cache memory, rather than the
process scheduling. We believe that it will be easier for the
students to understand the area of computer architecture and
organization. The scheduler removes a command at the top
of the queue and assigns the command to a core. Since the
primary target users of our EDUCacheIC simulator are the
undergraduate students of the first study year, the concurrency
is not implemented in the real meaning of the word.

Figure 2 depicts an example of the collaborative EDU-
CacheIC simulation scenario. The CPU consists of four cores
C0, C1, C2 and C3, each with dedicated L1 and L2 caches. All
four cores share the last L3 cache. Additionally, the student-
teacher should configure the cache size, set associativity, cache
line and cache replacement policy of each cache memory.

The presented scenario consists of three students A, B and
C. Student A executes only one process (memory reads) on
core C0. Student B executes two processes such that the
first process is executed also on core C0 and the second

Student B

(Worker-program B)

Student A

(Worker-program A)

CPU

C0

L1

L2

C1

L1

L2

C2

L1

L2

C3

L1

L2

L3

Student C

(Worker-program C)

Master-program

Fig. 2. An example of collaborative EDUCacheIC simulation scenario

process, which consists of two threads is executed with
CPU AFFINITY = ”2 3”, i.e., by one thread on cores
C2 and C3. Finally, student C executes one process with
memory reads executed in parallel with 4 threads with default
CPU AFFINITY , i.e., on all four cores.

Let’s analyze the processes (threads) on each core. C0

executes three processes that compete for L1 and L2 cache
memories of core C0. Core C1 executes only the process of
student C, while cores C2 and C3 execute by one thread of
students B and C, correspondingly.

D. Protocol

The communication between the master-program and the
worker-programs is implemented via a simple custom protocol
over TCP sockets. The Java implementation of TCP sockets
creates a full-duplex channel between the two parties. At the
beginning, this channel is used for connection establishment
and to transfer the information about the architecture and state
of the cache memory. Once the connection is established,
the master-program sends a broadcast message telling the
other worker-programs about the status of the simulator. The
possible states are:

• NOT CONFIGURED - the master-program has opened
its connection port. It can accept connections by the
worker-programs, but a CPU cache architecture has not
been defined by the student-teacher yet;

• CONFIGURED WAITING - the student-teacher has al-
ready created the CPU cache architecture. The master-
program is waiting for the student-workers to submit their
trace files and new connections can also be established
to other worker-programs;

• READY - all student-workers have submitted their trace
files. The student-teacher has to assign CPU’s and create

NOT_CONIGURED
CONFIGURED

WAITING

READYSTARTED

CPU created

Command queue created

T
race files su

b
m

itted

Fig. 3. States and transitions of EDUCacheIC simulator

the command queue, new connections can not be estab-
lished in this state; and

• STARTED - the command queue is created and simula-
tion is started; new connections can not be established.

Figure 3 depicts the transitions between the states that
the simulator can make. The simulator starts in the
NOT CONFIGURED state and after all the trace files have
been executed, or the simulation has been stopped, it goes in
the CONFIGURED WAITING state.

If the master-program has been configured with a CPU, the
architecture details are sent to the connected worker-programs.
Transitions between states are broadcast to all connected
worker-programs. When the trace files have been submitted,
the simulator is configured by the student-teacher to create
the command queue. These settings are also broadcast to all
worker-programs. Then the simulator is ready to transition
to the STARTED state, where it executes a command from
the top of the command-queue and broadcasts the command
to all worker-programs. The worker-programs listen to these
broadcasts and update the displays for their local worker-
students. The protocol is shown as a sequence diagram in more
detail in Figure 4.

E. EduCacheIC User Interface

As the EDUCacheIC is an extension of the original sim-
ulator, the steps for creating the CPU architecture remain
the same. The student-teacher must put the simulator in
construction mode where the required cache levels must be
created first and combined in CPU cores. After that, the CPU
cores can be saved into a Cache Configuration File.

Figure 5 gives an example of creating a cache configuration
with two cores. The cache elements have already been created
and they are displayed in the table on the right side of the
form. The left side of the form shows the first core with

an UID ”CO”, which has not yet been created. This form is
inherited of the predecessor and is adapted with the successor’s
requirements.

Figure 6 is a screen-shot of the EDUCacheIC when it is
in the CONFIGURED WAITING state. The top left panel
displays the loaded configuration, a dual-core CPU where the
first two cache levels are private for each core and the third
level is shared. The level one cache of core C0 is 2-way
associative with 32 bytes in size, the cache line is 8 bytes
and the replacement policy is FIFO.

The top right panel shows a list of connected worker-
programs with their specified identifier names and their IPs.
Because the simulator is in the second state (CONFIG-
URED WAITING) it can accept more connections. The bot-
tom left panel displays the list of the users that has submitted
a trace file. The bottom right panel is disabled until all
the student-workers submit a trace file. The student-teacher
uses this panel to create the command-queue by specifying
each worker-program’s starting position in the round-robin
command scheduling to the CPU.

III. RELATED WORK

We have found two main approaches to teach the hardware-
based courses:

• Using visual simulators - this includes all benefits of
distance learning, open education resources (OER), on-
line laboratories, etc; and

• Working on real hardware - this includes all benefits of
FPGA-based configurable processors.

Both approaches offer benefits to teachers, students and
universities. The former approach is usually cheaper since by
using the simulators and on-line tools, the universities can
share their laboratory equipment, thus removing the obstacles
of cost, time-inefficient use of facilities, inadequate technical
support and limited access to design and laboratory resources
[6]. It can awake the students’ interest in hardware [3]. Using
OER, the teachers and students can share their experiences.

The latter approach is also very important [7], [8], [9]. The
newest FPGAs are with considerable price. They can be used
by the students in laboratory exercises [10], [11] in order to
develop, implement and monitor both hardware and software
of multi-core processor systems on real hardware.

We prefer the visual simulators to lighten the teaching
and learning processes of hardware-based courses in the CS
curriculum, leaving the working on real hardware for better
students to work on more complex projects and research:

• HADES simulator [12] and our EDUCache simulator in
the Computer Architecture and Organization course;

• Visual OOO simulator [13] for ILP dynamic out-of-
order executions in the Advanced Computer Architectures
course; and

• Several visual simulators [14] for the Microprocessors
and Micro-controllers course.

Student-worker

Worker-program Master-program

Student-teacher

NOT_CONFIGURED

* * Open port

Configure CPU
CONFIGURED_WAITING

*

*Connect

Send configuration

Create trace file

Submit trace file

READY
Create command queue

Start simulation

Started

Broadcast executed commands

**

**

Fig. 4. Sequence diagram of EDUCacheIC simulator

Fig. 5. Creating a cache configuration with two cores

Fig. 6. The EDUCacheIC interactive and collaborative simulation

It is very difficult for the teachers of the Computer Ar-
chitecture and Organization course to decide which simulator
to be used since many visual simulators exist with different
features: EduMIPS64 [15], Dinero IV [16], CMP$im [17],
HC-Sim [18], Herruzo’s [19], Valgrind [20] (with its module
Cachegrind), SimpleScalar [21] and SMPCache [22]. Brief
explanation of all these simulators is given in our previous
research [4]. We concluded that all these simulators have one
or several deficiencies:

• Not primarily developed for teaching, but for data profil-
ing;

• A lack of educational features;
• Do not cover all topics in computer architecture and

organization area;
• Do not have prepared hands-on exercises to cover all

learning objectives;
• Do not include collaborative learning features; and
• Cover more advanced topics.
Our EDUCache simulator [1] covers all these deficiencies

and can be used in the Computer Architecture course to
lighten the teaching and learning [23], [4]. However, we have
detected that the EDUCache simulator lacks collaborative and
interactive features.

Bruffee [24] gives an overview of history of collaborative
learning. He discusses that it is a way to engage students more
deeply with the context and enable a more efficient learning
environment. Several authors [25], [26], [27], [28], [29] have
already introduced interactive course materials in engineering

courses, which can be very useful in students’ learning.
Hamada [30] introduced an integrated environment for active
learning of computer engineering, as support for collaborative
learning. Bachour et al. [31] show that using an interactive
tool increases the students’ motivation and leads to more
balanced collaboration. Weng et al. [32] proposed a technique
for learning the Boolean logic through the interaction of the
students and the interactive computer games, i.e., the Pac-Man
game rule tuning.

Therefore, we have developed a successor of our EDUCache
simulator, i.e., the interactive and collaborative EDUCacheIC
simulator, described in this paper.

IV. CONCLUSION AND FUTURE WORK

This paper describes the EDUCacheIC visual simulator,
the interactive and collaborative successor of our recently
developed EDUCache simulator for teaching and learning the
Computer Architecture and Organization course. Beside the
inherited features from the predecessor, such as designing CPU
with different hierarchies in cache levels (L1 to L3), various
cache owner configurations, visual simulation of cache hits
and misses, cache line fulfillment, cache associativity problem
and different cache replacement policies, the EDUCacheIC
simulator has a lot of additional features like CPU affinity
and multi-core processing.

The EDUCacheIC allows the CS students to learn the
Computer Architecture and Organization course easily through
team work on the laboratory exercises. Since it is a web

application, the students can work remotely from home.
Both EDUCache and EDUCacheIC simulators simulate

only memory reads, regardless of wether a memory read
generates cache hits or cache misses. We will continue to
upgrade the EDUCacheIC simulator to simulate the memory
writes to the students, both write invalidate and write through.

Our plan is to adapt and implement the EDUCacheIC
simulator into several other courses in CS curricula, such as
Operating Systems and Parallel and Distributed Computing.
That is, we would like to include simulation of real concurrent
execution with an overview on cache coherency algorithms.
Also, executing parallel threads or processes can be used for
analyzing shared memory threading.

REFERENCES

[1] B. Atanasovski, S. Ristov, M. Gusev, and N. Anchev, “EDUCache sim-
ulator for teaching computer architecture and organization,” in Global
Engineering Education Conference (EDUCON), 2013 IEEE, March
2013, pp. 1015–1022.

[2] R. Shackelford, A. McGettrick, R. Sloan, H. Topi, G. Davies, R. Kamali,
J. Cross, J. Impagliazzo, R. LeBlanc, and B. Lunt, “Computing curricula
2005: The overview report,” SIGCSE Bull., vol. 38, no. 1, pp. 456–457,
Mar. 2006.

[3] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A
survey and evaluation of simulators suitable for teaching courses in
computer architecture and organization,” Education, IEEE Transactions
on, vol. 52, no. 4, pp. 449 –458, nov. 2009.

[4] S. Ristov, B. Atanasovski, M. Gusev, and N. Anchev, “Hands-on
exercises to support computer architecture students using EDUCache
simulator,” in 2013 Federated Conference on Computer Science and
Information Systems FEDCSIS’13, Krakow, Poland, Sep 2013, p. in
press.

[5] ACM/IEEE-CS Joint Interim Review Task Force, “Computer science
curriculum 2008: An interim revision of CS 2001, report from the
interim review task force,” 2008, [retrieved: Aug., 2013]. [Online]. Avail-
able: http://www.acm.org/education/curricula/ComputerScience2008.pdf

[6] D. Pop, D. G. Zutin, M. E. Auer, K. Henke, and H.-D. Wuttke, “An
online lab to support a master program in remote engineering,” in
Proceedings of the 2011 Frontiers in Education Conference, ser. FIE
’11. USA: IEEE Computer Society, 2011, pp. GOLC2–1–1–GOLC2–
6.

[7] I. Kastelan, D. Majstorovic, M. Nikolic, J. Eremic, and M. Katona,
“Laboratory exercises for embedded engineering learning platform,” in
MIPRO, 2012 Proc. of the 35th Int. Conv., 2012, pp. 1113–1117.

[8] J. Qian, R. Wang, S. Shi, Y. Zhu, and Z. Xie, “Simplifying and
integrating experiments of hardware curriculums,” in Computer Science
and Information Technology (ICCSIT), 2010 3rd IEEE International
Conference on, vol. 9, 2010, pp. 610–614.

[9] D. Kehagias and M. Grivas, “Software-oriented approaches for teaching
computer architecture to computer science students,” Journal of Com-
munication and Computer, vol. 6, no. 12, pp. 1–9, Dec. 2009.

[10] X. Wang, “Multi-core system education through a hands-on project on
FPGAs,” in Frontiers in Education Conference (FIE), 2011, 2011, pp.
F2G–1–F2G–6.

[11] J. H. Lee, S. E. Lee, H.-C. Yu, and T. Suh, “Pipelined CPU design with
FPGA in teaching computer architecture,” Education, IEEE Transactions
on, vol. 55, no. 3, pp. 341–348, 2012.

[12] University of Hamburg, “HADES - Hamburg design system,”
2002, [retrieved: Aug., 2013]. [Online]. Available: http://tams-www.
informatik.uni-hamburg.de/applets/hades/html/

[13] A. Misev and M. Gusev, “Visual simulator for ilp dynamic ooo proces-
sor,” in Proceedings of the 2004 workshop on Computer architecture
education: held in conjunction with the 31st International Symposium
on Computer Architecture. ACM, 2004, p. 18.

[14] N. Ackovska and S. Ristov, “Hands-on improvements for efficient teach-
ing computer science students about hardware,” in Global Engineering
Education Conference (EDUCON), 2013 IEEE, March 2013, pp. 295–
302.

[15] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania, “Support-
ing undergraduate computer architecture students using a visual MIPS64
CPU simulator,” Education, IEEE Transactions on, vol. 55, no. 3, pp.
406 –411, aug. 2012.

[16] J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor
cache simulator,” 2012, [retrieved: Aug., 2013]. [Online]. Available:
http://pages.cs.wisc.edu/∼markhill/DineroIV/

[17] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “CMPSim: A pin-based
on-the-fly multi-core cache simulator,” in The Fourth Annual Workshop
MoBS, co-located with ISCA ’08, 2008.

[18] Y.-T. Chen, J. Cong, and G. Reinman, “HC-Sim: a fast and exact L1
cache simulator with scratchpad memory co-simulation support,” in
Proc. of the 7-th IEEE/ACM/IFIP Int. conf. on HW/SW codesign and
system synthesis (CODES+ISSS ’11). USA: ACM, 2011, pp. 295–304.

[19] E. Herruzo, J. Benavides, R. Quislant, E. Zapata, and O. Plata, “Simu-
lating a reconfigurable cache system for teaching purposes,” in Micro-
electronic Systems Education (MSE ’07). IEEE International Conference
on, 2007, pp. 37 –38.

[20] Valgrind, “System for debugging and profiling Linux programs,”
[retrieved: March, 2013]. [Online]. Available: http://valgrind.org/

[21] SimpleScalar LLC, “SimpleScalar tool set,” [retrieved: Aug., 2013].
[Online]. Available: http://www.simplescalar.com/

[22] University of Extremadura, “SMPCache - simulator for cache memory
systems on symmetric multiprocessors,” [retrieved: Aug., 2013].
[Online]. Available: http://arco.unex.es/smpcache/

[23] S. Ristov, M. Gusev, B. Atanasovski, and N. Anchev, “Using EDU-
Cache simulator for the computer architecture and organization course,”
International Journal of Engineering Pedagogy (iJEP), vol. 3, no. 3, pp.
47–56, 2013.

[24] K. A. Bruffee, “Collaborative learning and the ”conversation of
mankind”,” College English, vol. 46, no. 7, pp. 635–652, 1984.

[25] S. Hadjerrouit, “Learner-centered web-based instruction in software
engineering,” IEEE Trans. on Educ., vol. 48, no. 1, pp. 99–104, Feb.
2005.

[26] M. Hamada, “Visual tools and examples to support active e-learning
and motivation with performance evaluation,” in Technologies for
E-Learning and Digital Entertainment, ser. Lecture Notes in Computer
Science, Z. Pan, R. Aylett, H. Diener, X. Jin, S. Gbel, and L. Li, Eds.
Springer Berlin Heidelberg, 2006, vol. 3942, pp. 147–155. [Online].
Available: http://dx.doi.org/10.1007/11736639 20

[27] S. Li and R. Challoo, “Restructuring an electric machinery course with
an integrative approach and computer-assisted teaching methodology,”
Education, IEEE Transactions on, vol. 49, no. 1, pp. 16–28, 2006.

[28] J. Masters, T. M. Madhyastha, and A. Shakouri, “Educational applets
for active learning in properties of electronic materials,” IEEE Trans. on
Educ., vol. 48, no. 1, pp. 29–36, Feb. 2005.

[29] R. Nelson and A. Islam, “Mes - a web-based design tool for microwave
engineering,” Education, IEEE Transactions on, vol. 49, no. 1, pp. 67–
73, 2006.

[30] M. Hamada, “An integrated virtual environment for active and collabora-
tive e-learning in theory of computation,” Learning Technologies, IEEE
Transactions on, vol. 1, no. 2, pp. 117–130, 2008.

[31] K. Bachour, F. Kaplan, and P. Dillenbourg, “An interactive table for
supporting participation balance in face-to-face collaborative learning,”
Learning Technologies, IEEE Transactions on, vol. 3, no. 3, pp. 203–
213, 2010.

[32] J.-F. Weng, S.-S. Tseng, and T.-J. Lee, “Teaching boolean logic through
game rule tuning,” Learning Technologies, IEEE Transactions on, vol. 3,
no. 4, pp. 319–328, 2010.

