
A Comparative Analysis of HOTP and TOTP Authentication Algorithms. Which one to
choose?

Lina Lumburovska, Jovana Dobreva, Stefan Andonov, Hristina Mihajloska Trpcheska, Vesna Dimitrova

Faculty of Computer Science & Eng. Ss. Cyril and Methodius University
Skopje, R. N. Macedonia

jovana.dobreva@finki.ukim.mk

Abstract: Giving the right access, limiting resources, and recognizing a user’s identity are important steps that need to be taken into

consideration before entering a certain network. These steps are executed by authentication and authorization. In this paper, we put our

focus on authentication algorithms HOTP and TOTP as two algorithms for generating one-time passwords. A one-time password is an
automatically generated string of characters - a password that is meant to be used only once. This password is only valid for one login

session or transaction. Due to its randomness and usage (only once), it leads to higher security outputs, and that is why this type of password

is used in authentication algorithms. We will analyse both algorithms and their working way and will present the obtained results and their
usage in practice. The main characteristic is that the HOTP algorithm uses only hash functions and the TOTP algorithm uses time above the

hash. To check when each algorithm is better to use, we need to know the given environment and circumstances. In this paper, we will try to
answer the question” Which one is better at a particular time?”. Depending on many factors that we analyse through the sections, we are

going to make conclusions that will be useful for future planning of good security passwords.

Keywords: authentication, security, one-time passwords, HOTP, TOTP, hashing functions

1. Introduction

The first step which needs to be taken when we want to access a

certain network and the services it offers is the authentication

process. Authentication as a process includes recognizing a user’s

identity, which means determining whether someone or something

is who or what it declares itself to be based on a set of credentials.

The most common way to check credentials is by checking the

username and associated password. If certain credentials (username

and password) match the credentials stored within the

authentication server, besides authentication there is one more step

that needs to be taken, the authorization process that checks if the

user has the right permission to access the required services.

Authentication and authorization are two processes that are

connected, and in many situations, they depend on each other, but

in this paper, we will make a comprehensive description and
analysis of the authentication process [3, 1].

Username often consists of the individual’s first and last

name, i.e., it represents the user’s identity, and the chosen

password is something that is determined by the user and has to

remain secret. Often users make Tweak passwords to be easy to

remember, which also means they can be easily guessed.

Therefore, authentication based on entering username and

password does not provide adequate security when accessing

systems with sensitive data. If you have noticed, the most

common rules for a password are min length of characters, at least

one special character, upper and lower letter, and number.

However, this leads to higher security and passwords that can

hardly be guessed. Due to the vulnerabilities mentioned above,

which are brought by authentication, the basis of username and

password is changed using a combination of different independent

authentication factors. Roughly speaking, these authentication

factors can be separated into three groups: something you know,

something you have, and something you are. For example, when

using a username and password, we are talking about the first

group - something you know because the user must know his

credentials to execute his request. Then, when talking about

something that a user owns, we have the second group -

something you have, such as some physical device, i.e., one-time

physical password generators and smart cards. The last group -

something you are described with the biometric parts of the

human body such as fingerprints, face and voice patterns, or any
other parts of the human body [5].

In recent years, we have often talked about the principles of

strong authentication, which most often refers to two-factor

authentication and multi-factor authentication. This is called strong

authentication because the users prove their identity with at least

two independent authentication methods that belong to different

groups. Two-factor authentication can also be used with username

and password and ensures a higher level of service security. This

authentication method makes it very difficult for attackers to gain

access to user devices for online accounts because just knowing the

user’s password is no longer enough to verify the identity since the

attacker does not have the other part of the authentication process.

However, as a part of two-factor authentication, we usually talk

about the security of devices that a user owns, and the software is

responsible for the identification [16]. In addition to secure devices

in physical form, software solutions are also easier to use. These

solutions generate passwords according to some predefined

algorithms, which will be explained in the following sections.

The paper is partitioned into a few sections, structured as

follows. The second section is providing a brief introduction to

authentication algorithms and one-time passwords in general. The

HOTP and TOTP algorithms are explained in the third and fourth

sections accordingly, while in the fifth section we give a brief

overview of their similarities and differences. In the sixth section,

we present the practical usage of both algorithms supported with

real-life examples, within a simple analysis with improvements of a

more modern hash functions. In the end, we gave a conclusion of

the analysis of both algorithms.

2. Authentication Algorithms and One-time

Passwords

This section describes the implementation and differences

between HOTP (HMAC-based One-Time Password) and TOTP

(Time-based One-Time Password) algorithms, as two different

algorithms for generating one-time passwords. We can see that

both of them have something in common besides the fact that they

are authentication algorithms. The main similarity between the two

algorithms is the generation of a one-time password. As its name

says, a one-time password is an automatically generated string of

characters - a password that is meant to be used only once. This

password is only valid for one login session or transaction, for a

limited period. Due to its randomness and usage, it leads to higher

security outputs and that is why this type of password is used in

authentication algorithms [13, 8].

One of their biggest advantages is that these passwords are

static, and they are resistible to replay attacks, which means that if

a potential attacker records some past one-time passwords, he

cannot use them to log in to the system afterward, because the

INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE" WEB ISSN 2535-082X; PRINT ISSN 2535-0668

131 YEAR V, ISSUE 4, P.P. 131-136 (2021)

mailto:jovana.dobreva@finki.ukim.mk

∗

passwords will no longer be valid. The one-time passwords are

beneficial when a user has logged in to more than one system.

Therefore, if he uses a one-time password, he will need a different

password for each device and if a hacker finds one of the

passwords, he cannot use that password to login to the other
systems [7].

To sum up, the security of the one-time password method is

high, but it does not mean that this method is unbreakable. The one-

time password methods are vulnerable to a man-in- the-middle

attack, but we will not dive into details about the attack’s side as it

is not part of the scope of this paper.

3. HOTP Algorithm

HOTP (HMAC-based One-time Password) is a one-time

password algorithm based on HMAC (hash-based message

authentication code). This algorithm was found by David et al. in
2005 [9, 25].

Firstly, we will briefly describe hash functions, since this

algorithm is based on hash functions as one of the fundamental

building blocks of modern cryptography. These are functions that

convert an arbitrarily long message into a sequence of bits of a

certain length. In combination with asymmetric algorithms, they

are the most commonly used for encryption and digital signing.

Modern hash functions must be deterministic and computationally

efficient. Also, known as one-way functions, which means that the

hash value is calculated from the input, and it is not possible vice

versa i.e., to efficiently calculate the input from a given hash

output value. The most frequently used hash functions belong to

the SHA (Secure Hash Algorithm) family and these features

additionally have the property that a small change in the message

causes a well- perceived change density (the old and the new
digests do not look similar) [26].

Fig. 1 Scheme of HOTP algorithm [23]

Although, hash functions are the message authentication

mechanism that plays an important role in the algorithms for

generating one-time passwords. Hash-based message

authentication code (HMAC) is a mechanism for calculating a

message authentication code involving a hash function such as

MD5 (Message Digest), SHA-1, or other hash function in

combination with a secret key. HMACs are almost like digital

signatures. They both enforce integrity and authenticity. They

both use cryptographic keys, and they both employ hash functions.

The main difference is that digital signatures use asymmetric keys,

while HMACs use symmetric keys. HMAC uses two passes of

hash computation. The secret key is first used to derive two keys –

inner and outer. The first pass of the algorithm produces an

internal hash derived from the message and the inner key. The

second pass produces the final HMAC code derived from the

inner hash result and the outer key. HMAC is described using the
following equation:

 HMAC(K, m) = H((Kj ⊕ opad) || H((Kj ⊕ ipad) || m)) (1)

where H is the hash function, m is the message to be

authenticated, K is the secret key, Kj is a block-sized key

derived from the secret key, K; either by padding to the right with

0s up to the block size, or by hashing down to less than or equal

to the block size first and then padding to the right with

zeros, opad is the block-sized outer padding and ipad is the block-
sized inner padding [19, 6].

HOTP is an algorithm for generating a one-time password that

works based on a message authentication mechanism. It can be

implemented by any hardware or software developer to create an

interoperable authentication device or software. An incremental

counter and a static symmetric key, known only to the security

device and the verification server, are used to generate one-time

passwords. For the HOTP value, it is used the HMAC-SHA-1

algorithm that accepts an arbitrarily large data set and returns a
value of a certain length of 160 bits as an output value:

 HOTP(K, counter) = HMAC - SHA-1(K, counter) (2)

where K is the common secret between the client and the server

and counter is the 8-byte counter value. This counter must be

synchronized between the HOTP generator (client) and the HOTP

validator (server). The value obtained must then be truncated

using dynamic truncation function (DT) specialized for HOTP.

So, from the first step the HOTP value is 160bits (20-byte string).
Then, we generate a 4-byte string by using DT function such

 Sbits = DT(HMAC - SHA-1(K, counter)) (3)

and it returns a 31-bit string. We recompute the HOTP value as

 Snum = StToNum(Sbits) (4)

where we convert the string to number. The purpose of the

dynamic offset truncation technique is to extract a 4-byte dynamic

binary code from a 160-bit (20-byte) HMAC-SHA-1 result. Due

to the fact that the final value must be at least 6-digits (or 7 or 8 or

more) we use modular operation Snum mod(10digit), where digit is

the selected number of digits to be outputted (6,7,8 or more) [10].

Although the server’s counter value is only incremented after a

successful HOTP authentication. Also, the counter on the token is

incremented every time a new HOTP is requested by the user.

Because of this, the counter values on the server and the token

might be out of synchronization, and resynchronization of the

counter is required. This can be solved by setting a parameter s on

the server, which defines the size of the look- ahead window. The

server can recalculate the next s HOTP- server values and check

them against the received HOTP client. Synchronization of

counters in this scenario simply requires the server to calculate the

next HOTP values and determine if there is a match. Optionally,

the system may require the user to send a sequence of (per

example, 2, 3) HOTP values for resynchronization purposes, since

forging a sequence of consecutive HOTP values is even more

difficult than guessing a single HOTP value [10].

The HOTP algorithm is vulnerable to brute force attacks due

to the use of the truncated HMAC-SHA-1 value, which means that

the authentication server must be able to detect and prevent such

an attack. The first option is to use a limit on the number of

requests by setting the damping parameter D, which defines the

maximum number of possible attempts to validate a single

password. Another option is to implement a delay scheme that

works so that after the i-th failed attempt, the authentication server

waits for the increasing number of seconds Di. Therefore, if D = 5,

after the first attempt, the server should wait for example 5

seconds, and after the second failed attempt 5 * 2 = 10 seconds

and so on. Authentication between the client and the certifier must

INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE" WEB ISSN 2535-082X; PRINT ISSN 2535-0668

132 YEAR V, ISSUE 4, P.P. 131-136 (2021)

take place via secure channels and using appropriate security

mechanisms, such as using a session identifier to protect the user’s

privacy and avoid repetitive attacks. The main problem of the

HOTP algorithm is that the generated password is valid for a long

time or at least until the next authentication attempt, which means

that if the attacker overrides the password, he can use it at any

time. This shortcoming is solved by the TOTP algorithm within
which every password has limited validity.

Using the parameter D, the security of the algorithm is

increased because after each unsuccessful attempt the number of

seconds to wait is increased. On the other hand, the usage of

truncation has its disadvantages because it leads to more insecure

implementation. This can be handled if the value of the digits is

increased (for example, more than 8), so it becomes less

vulnerable to brute force attacks in real time. The security also

depends on the parameter s which ensures the server does not go

on checking HOTP values forever (causing a denial-of-service

attack) and also restricts the space of possible solutions for an

attacker trying to manufacture HOTP values.

SHA-1 has a weakness concerning collisions [21]. But HMAC

resistance does not rely on resistance to collisions. Indeed, HMAC

is proven secure as long as the hash function which it uses is a

Merkle-Damgard function which itself relies on an internal

”compression function” which behaves like a PRF(Pseudorandom

function family). The known weakness of SHA-1 voids the proof,

but nobody knows how to turn that into a weakness on

HMAC/SHA-1. Empirically, we have the example of MD4

(Message Digest): MD4[18] is extremely broken with regards to

collisions, with a near-zero cost (computing a collision for MD4

takes less time than actually hashing the two colliding messages to

verify that it is, indeed, a collision), and HMAC/MD4 is also

broken, but with a quite non-trivial cost of 258 plaintext/MAC

pairs (and that’s a forgery attack, not even a key recovery attack),

making it utterly non-applicable in practice. If we have the same

kind of ratio for SHA-1, then HMAC/SHA-1 is still very safe. To

sum up, using the default SHA-1 for the HOTP is still a valid
option.

4. TOTP Algorithm

TOTP (Time-based One-time Password) is a one-time

password algorithm which uses the current time as a source of

uniqueness [11, 24]. The TOTP algorithm is a version of the

HOTP algorithm that works based on time and is calculated

according to the common function (2), except that in this case the

counter is replaced by the value of T, which is derived from the

time reference. The HMAC-SHA-256 or HMAC-SHA-512

algorithm may be used instead of the HMAC-SHA-1 algorithm to
calculate a one-time password. In general, TOTP is defined as:

 TOTP = HOTP(K, T) (5)

where T represents the number of time steps from the initial time

counter T0 and the current UNIX time. More specifically, T is
defined as:

 T = (CurrentUNIXTime - T0)/X (6)

where X represents the number of time steps in seconds (default

value for X is 30 seconds) and is a system parameter, and T0 is the

UNIX time at which we start counting time steps (default value is
0) [12].

When the authentication server receives a one-time password

(OTP), it does not know precisely when it was created. Due to

network delays, the gap (number of time steps from time T0

onwards) between the time when OTP was created and the time the

verification system receives the OTP may be too large. Therefore,

the verification system should typically set a policy for an

acceptable OTP transmission delay time. The larger this interval is,

the more exposed it is to the possibility of an attack. It is strongly

recommended that the time lag should be less than the size of a

one-time step.

Fig. 2 Scheme of TOTP algorithm [22]

The larger interval that was mentioned before is, decreases the

security of the algorithm. According to equation (3), TOTP is

calculated from HOTP which means that the security of this

algorithm depends on the HOTP parameters. Choosing the right

HOTP parameters and how they increase/decrease security was

described in the third section and those rules are the same for the

TOTP algorithm.

5. The Main Differences between Algorithms

The previous two sections were written to explain both

algorithms in detail and this section will give an overview of both
algorithms and explain what the difference between algorithms is

and compare them according to their possibilities.

5.1. HOTP Analysis

1) The algorithm uses a counter, as one of the goals is to

include an algorithm for generating one-time passwords

based on the HMAC value in devices to store large

amounts of data, such as USB keys and SIM cards.

2) The algorithm should be economical in terms of

implementation in hardware by minimizing the

requirements related to battery, the number of buttons, the

computational power, and the size of the screen in case the

device uses it [10].

3) The algorithm works with tokens that do not support any

numeric input but can also be used with more advanced

devices such as secure PIN inputs.

4) The value displayed on the device should be easy to read

and enter; it should also be of reasonable length but not

less than six characters. It is also desirable that the HOTP

value is exclusively numerical, which allows easy entry

into devices such as telephones.

5) The mechanism for resynchronizing the counter is suit-

ably chosen (a good example of how to choose it is

described in section 3). Each time the user requests it, it

should be increased on the device, and on the server, the

counter is increased only upon successful authentication

based on a valid HOTP value.

6) The algorithm uses a symmetric key known only to the

authentication server and client. To ensure greater

security against some known attacks on the symmetric

keys, and by the fact that this key is hardcoded on the

INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE" WEB ISSN 2535-082X; PRINT ISSN 2535-0668

133 YEAR V, ISSUE 4, P.P. 131-136 (2021)

device, the recommendation is to use the symmetric key

that is at least 128 bits long.

5.2. TOTP Analysis

1) To generate a TOTP value, the client (physical or

software one-time password generator) and the certifier

(authentication or validation server) must know whether

they are capable of obtaining the current UNIX time. The

most common way to obtain this is to count the number of

seconds elapsed since midnight UTC of January 1, 1970

[12].

2) The client and the certifier either share a key or have

information based on which they generate a key (for

example, using symmetric cryptography).

3) The algorithm uses HOTP as the main building block.

4) The client and the certifier should use the exact value of

the time step X, which illustrates the duration of the

password in seconds.

5) Keys can be stored on devices with tamper-resistant

properties that are protected against unauthorized access.

Those devices use hardware encryption, are activated only

when required: the key is decrypted when needed to verify

an OTP value and re-encrypted immediately to limit

exposure in the RAM for a short period.

5.3. Analysis Conclusion of Both Algorithms

HOTP (also known as Event-based OTP) is the original one-time

password algorithm and relies on two pieces of information. The

first is the secret key, which is known only by the token and the

server that validates submitted OTP codes. The second piece of

information is the moving factor, which in event-based OTP, is a

counter. The counter is stored in the token and on the server. The

counter in the token increments when the button on the token is

pressed, while the counter on the server is incremented only when

an OTP is successfully validated. TOTP is based on HOTP where

the moving factor is time instead of the counter. This is the main

difference between both algorithms TOTP uses time in increments

called the timestep, which is usually 30 or 60 seconds. This means

that each OTP is valid for the duration of the timestep [12]. Both

OTP schemes offer single-use codes, but the main difference is that

in HOTP a given OTP is valid until it is used, or until a subsequent

OTP is used. In HOTP, there are several valid “next OTP” codes.

This is because the token button can be physically pressed, and the

counter on the token immediately increases. However, this action is

done without the resulting OTP being submitted to the validating

server. For this reason, HOTP validating servers accept a range of

OTPs. Specifically, they will accept an OTP generated by a counter

within a set number of increments from the previous counter value

stored on the server. This range is referred to as the validation

window. If the token counter is outside the server’s range, the

validation fails, and the token must be re- synchronized. So clearly,

in HOTP, there is a trade-off to be made. The larger the validation

window is, the less likely the chance to re-sync the token with the

server can be done, which is inconvenient for the user. Notably,

the larger the window is, the greater the chance of an adversary

guessing one of the accepted OTPs through a brute-force attack is.

In contrast, in TOTP, there is only one valid OTP at any given time

- the one generated from the current UNIX time [4].

6. Practical Usage

One-time password generators are divided into HOTP and TOTP

generators. They are divided into physical devices and software

generators, where physical devices are usually smaller devices that

create a one-time password when the button is pressed or after

entering the PIN code and display it on the screen. The user then

logs in using this password. Software generators work on the same

principle, except that in this case an application such as e.g.,

Google Authenticator, which mimics the behavior of a physical
generator, is installed on a device such as e.g., mobile phone.

Fig. 3. (a) OTP generator protected by PIN (b) OTP generator

not protected by PIN [2]

One way to generate an OTP is by using grid cards or transaction

numbers of lists. These methods offer low investment costs but are

slow, difficult to maintain, easy to replicate and share, and require

the users to keep track of where they are in the list of

passwords. Another, more convenient way for users is to use an

OTP token, a hardware device capable of generating one-time

passwords. Some of these devices are PIN protected which offers

an additional level of security. The user enters the one-time

password with other identity credentials, and an authentication

server validates the logon request. Although this is a proven

solution for enterprise applications, the deployment cost can make

the solution expensive for consumer applications. Because the

token must be using the same method as the server, a separate

token is required for each server logon, so users need a different

token for each Web site or network they use. Last, more advanced

hardware tokens use microprocessor-based smart cards to

calculate one-time passwords. Smart cards have several

advantages for strong authentication, including data storage

capacity, processing power, portability, and ease of use. They are

inherently more secure than other OTP tokens because they

generate a unique, non-reusable password for each authentication

event, store personal data, and do not transmit confidential or

private data over the network [17, 15].

One-time password generators are one of the most commonly

used authentication factors today. No matter how secure the use of

such devices may seem at first glance, this method of two-

factor authentication has some vulnerabilities. One of the main

problems is the possibility of a man-in-the-middle attack in real-

time, where a real-time attacker misuses the data of a user who

wants to log in to a service. The attacker imitates the appearance

of the target website and thus obtains all the necessary

authentication data of the user when he logs in to the service on

the fake website. This information is then immediately transmitted

to a legitimate website and allows the attacker to report on behalf

of the victim. Such attacks can be largely prevented by the user

never using the public network to access sensitive data, and the

use of VPN provides even better security, as communication takes

place through a secure tunnel. Also, another useful comment here

is never to put your secret data on the service that communicates

over the unprotected channel. Using hypertext transfer protocol

secure (https) is always the right choice.

6.1 Improvements with SHA-256

In this subsection, we focused our research on analyzing HOTP

and TOTP algorithms with HMAC-SHA256. We explained that

there is no mistake if both algorithms are used with HMAC-SHA-

1, but because there are more modern hash functions, in this

subsection we decided to expand our sights and we give a short

overview about the performance analysis if both algorithms are

used with HMAC-SHA-256.

Hash function SHA-256 comes from the family SHA-2, which is an
upgraded and more secure version of the hash function SHA-1. The

SHA-2 family consists of more hash functions, which depends on

INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE" WEB ISSN 2535-082X; PRINT ISSN 2535-0668

134 YEAR V, ISSUE 4, P.P. 131-136 (2021)

the output they provide, and in this analysis, we chose the SHA-256
which outputs 256 bits. In this case, we can see the difference

between SHA-1 where we had 160 bits compared to 256 bits. This
is the first indicator where the security of the hash function is

increased due to the extended length. For example, if we compare
according to the brute force attack, where L is the number of bits

in the message digest, finding a message that corresponds to a given

message digest can be done in almost 2L evaluations. SHA-1 has
160 bits message digest and SHA-2 has 256 bits message digest.

Accordingly, SHA-1 has 2160 evaluations and SHA-2 has 2256
evaluations to find the hash value. This may seem a small

difference, but the machine that performs the action will require
much more performance to implement such an attack, even though

for more than 80 bits it is still impossible. Then, we have the
problem with the collision, finding two different messages that

result with the same message digest is about 2L/2 evaluations using

the birthday attack. This attack is much faster than the brute force
attack, so the evaluations for SHA-1 are 280 (as if 80 bits message

digest) compared to the evaluations for SHA-2 which are 2128 (as if
128 bits message digest). To sum up, collision is the reason why the

security (the strength) provided by the hash function is divided by 2
from the number of bits that the algorithm has as a message digest.

SHA-1 has 80 bits security and SHA-2, 128 bits security.

Theoretically, to break 80 bits security, a machine may require 1
day, to break 84 bits security, a machine may require 12 days, to

break 89 bits security, a machine may require 1 year, and so on. In
this example, we can see that there is a clear difference between 80

bits and 128 bits message digest which one more time increases the
security of the SHA-2. With much better security, HMAC is more

secure with SHA-2 than with SHA-1 [20].
According to the analysis, HMAC-SHA-1 is still valid and

secure, but as time passes and new technologies are discovered, it is

recommended to switch to more modern and secure versions.

HOTP and TOTP in our analysis are used with HMAC-SHA-1, but

in the next analysis, we will continue our work on how they will be

implemented with HMAC-SHA-256 according to the above-written

analysis and also with all the newest lightweight hash functions
standardized by the NIST 2021 [14].

7. Conclusion

To sum up, everything that was written and explained in this

paper, both algorithms are secure and used in practice with their

advantages and disadvantages.

From a secure perspective, TOTP is better to use. Importantly,

the validating server must be able to cope with the potential for

time-drift with TOTP tokens to minimize any impact on users.

The fact of adding an extra factor that needs to be met increases

the security of the code. On the other hand, the sending of the one-

time codes depends on external factors, such as broadband

coverage (for SMS and calls) and internet connection (for email or

messaging apps). If the user lacks any of them, the code won’t

arrive at the user’s device, and they will be incapable of entering

the code and verifying their identity. In this case, the user will

need to ask for an extra code. Even when all the external platforms

are working correctly, if the user doesn’t enter the OTP quickly,

the code won’t be valid either. Regarding this matter, HOTPs can

be a friendlier way of verifying users, since they are not limited by

the timesteps and can enter the code whenever they want to.

Unfortunately, this is a less secure option when compared to time-

based OTPs. Whatever type of one-time code we are using, we

can be sure that multi-step authentication processes are an

efficient way of onboarding users. Using one-time passwords is a

way of reinforcing forms based on passwords, verifying the user’s

phone number or email account. The chances of fraud or failure

when using one-time passwords in two-factor authentication are

positively low.

References

[1] Authentication Vs Authorization- What’s The

Difference?https://www.ilantus.com/blog/authentication-

vs-authorization-whats-the-difference/. Accessed:

23.11.2021.

[2] Authentication devices.

https://www.hidglobal.com/system/files/doc_eol_expire

d_files/iam-activid-otp-tokens-br-en.pdf Accessed:

20.11.2021.

[3] Marc Briceno et al. Advanced authentication techniques

and applications. US Patent 10,270,748. Apr. 2019.

[4] HOTP vs TOTP: What’s the Difference? https://www.

microcosm.com/blog/hotp-totp-what-is-the-difference.

Accessed: 20.11.2021.

[5] Christophe Kiennert, Samia Bouzefrane, and Pascal

Thoniel. “Authentication systems”. In: Digital identity

management. Elsevier, 2015, pp. 95–135.

[6] Hugo Krawczyk, Mihir Bellare, and Ran Canetti.

HMAC: Keyed hashing for message authentication.

1997.

[7] Ricardo Margarito Ledesma. Systems and methods for

one-time password authentication. US Patent

10,587,613. Mar. 2020.

[8] Chung-Huei Ling et al. “A Secure and Efficient One-

time Password Authentication Scheme for WSN.” In: Int.

J. Netw. Secur. 19.2 (2017), pp. 177–181.

[9] David M’Raihi et al. “Hotp: An hmac-based one-time

password algorithm”. In: The Internet Society, Network

Working Group. RFC4226 (2005).

[10] David M’Raihi et al. “Hotp: An hmac-based one-time

password algorithm”. In: The Internet Society, Network

Working Group. RFC4226 (2005).

[11] David M’Raihi et al. “Totp: Time-based one-time pass-

word algorithm”. In: Internet Request for Comments

(2011).

[12] David M’Raihi et al. “Totp: Time-based one-time pass-

word algorithm”. In: Internet Request for Comments

(2011).

[13] Matthew Nichols. Generation of randomized passwords

for one-time usage. US Patent 10,282,526. May 2019.

[14] NIST Lightweight Cryptography Standardization Pro-

cess. https://csrc.nist.gov/Projects/lightweight-

cryptography/finalists. Accessed: 20.11.2021.

[15] OATH Authentication Tokens. https:// cpl. thalesgroup.

com / access - management / authenticators / oath - tokens.

Accessed: 20.11.2021.

[16] Aleksandr Ometov et al. “Multi-factor authentication:

A survey”. In: Cryptography 2.1 (2018), p. 1.

[17] One Time Password (OTP, TOTP) : definition, examples.

https://www.thalesgroup.com/en/markets/digital-identity-

and-security/technology/otp. Accessed: 20.11.2021.

[18] Ronald L Rivest. “The MD4 message digest algorithm”.

In: Conference on the Theory and Application of Cryp-

tography. Springer. 1990, pp. 303–311.

[19] M Rogobete and O Tarabuta. “Hashing and Message

Authentication Code Implementation. An Embedded

Approach”. In: Scientific Bulletin” Mircea cel Batran”

Naval Academy 22.2 (2019), 296A–304.

[20] Marc Stevens. “Real-world Cryptanalysis”. Second

AMSec Workshop (2019). https://www.amsec.org/wp-

content/uploads/2019/10/Stevens.pdf Accessed:

23.112021

[21] Marc Stevens, Pierre Karpman, and Thomas Peyrin

“Freestart collision for full SHA-1”. In: Annual

International Conference on the Theory and Applications

of Cryptographic Techniques. Springer. 2016, pp. 459–

INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE" WEB ISSN 2535-082X; PRINT ISSN 2535-0668

135 YEAR V, ISSUE 4, P.P. 131-136 (2021)

https://www.hidglobal.com/system/files/doc_eol_expired_files/iam-activid-otp-tokens-br-en.pdf
https://www.hidglobal.com/system/files/doc_eol_expired_files/iam-activid-otp-tokens-br-en.pdf
http://www/
https://www.amsec.org/wp-content/uploads/2019/10/Stevens.pdf
https://www.amsec.org/wp-content/uploads/2019/10/Stevens.pdf

483.

[22] TOTP Algorithm Explained. https://www.protectimus.

com / blog / totp - algorithm - explained/. Accessed:

23.11.2021.

[23] Suratose Tritilanunt, Napat Thanyamanorot, and

Nattawut Ritdecha. “A secure authentication protocol

using HOTP on USB storage devices”. In: 2014

International Conference on Information Science,

Electronics and Electrical Engineering. Vol. 3. IEEE.

2014, pp. 1908–1912.

[24] Mariano Luis T Uymatiao and William Emmanuel S Yu.

“Time-based OTP authentication via secure tunnel

(TOAST): A mobile TOTP scheme using TLS seed

exchange and encrypted offline keystore”. In: 2014 4th

IEEE International Conference on Information Science

and Technology. IEEE. 2014, pp. 225–229.

[25] Andrea Visconti and Federico Gorla. “Exploiting an

HMAC-SHA-1 optimization to speed up PBKDF2”. In:

IEEE Transactions on Dependable and Secure

Computing 17.4 (2018), pp. 775–781.

[26] What is a hash function? Definition, usage, and

examples.https://www.ionos.com/digitalguide/server/sec

urity/hash-function/ Accessed: 20.11.2021.

INTERNATIONAL SCIENTIFIC JOURNAL "SECURITY & FUTURE" WEB ISSN 2535-082X; PRINT ISSN 2535-0668

136 YEAR V, ISSUE 4, P.P. 131-136 (2021)

