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Abstract—Data normalization methodologies are extremely
welcome to link extracted information from textual data to
different semantic resources. These methodologies have been
previously well researched especially in the biomedical domain,
where health concepts were normalized and described using
semantic tags. Recently, a methodology for normalizing food
concepts has been proposed, based on Named-Entity Recognition
methods resulting in the FoodOntoMap semantic resource. In this
paper, we propose and evaluate a new architecture for linking
phrases (i.e. textual name for foods) to concepts from semantic
resources in the Food and Nutrition domain. We represent
the food phrases (i.e. their textual name) in continuous vector
space using state-of-the-art Natural Language Processing (NLP)
embedding algorithms, and evaluate their proximity with respect
to the annotated semantic food concepts. Additionally, indexing
was incorporated to improve efficiency.

The GloVe embedding with mean pooling provided best
evaluation results, with maximum recall of 74% for the Snomed
CT semantic dataset, which is promising result, but also opens a
space for future improvement of the phrase representations, and
their incorporation in this system.

Index Terms—Natural Language Processing, Text representa-
tion, Embeddings, Data normalization and linking

I. INTRODUCTION

In the Food and Nutrition domain, textual data contains a
huge amount of information to be considered in order to foster
the development of research in the domain. As textual data
is unstructured, advanced methodologies are required for the
automated extraction of information from this data.

To work with textual data, Natural Language Processing
(NLP) techniques are extremely welcome. NLP is a subfield
of artificial intelligence, where main tasks address analyzing
and processing large amount of natural language data in order
to make it understandable by computers. One crucial task here
is how the textual data can be represented to be interpretable
by the machines. Even though the ground work for word
representation was made with Word2Vec [24] and Glove [27]
embeddings, the transformer architecture [35] mainly rep-
resented with Elmo [29] and USE [12] in the early days

provided more intelligent ways to represent sentences. Shortly
after that, Google’s BERT [13] found a way to contextually
represent both words and sentences. From this point on, huge
advancement has been made in multiple NLP tasks due to the
use of these transformer based language models.

One task in NLP is Information Extraction (IE), where
so-called Named Entity Recognition (NER) are developed,
which automatically detect and identify text phrases that
represent domain entities. Language models have enabled the
development of state-of-the-art NER systems that are able to
extract entities such as Organizations, Locations, Deceases,
Drugs, Foods etc [5], [9], [16]. However, once this kind of
information is extracted, there is another problem of nor-
malizing it [25], even though its general category is known.
Today, for most of these categories, there already exist detailed
semantic resources, i.e. taxonomies and ontologies [1], [3],
[10], [14], but still, the systematic knowledge is mainly used
for rule-based matching based on synonyms, hypernyms and
edit distance matching [18], [31], [32].

In this paper, we are investigating a new approach of
linking phrases from the Food and Nutrition domain with their
conceptual representations using the similarity of different
phrase representations. We should note here that based on the
semantic resource that is selected as a linking source, one food
concept can simultaneously belong to more semantic tags (i.e.
food concept mapping).

The remainder of the paper is organized as follows: in
Section II, related work on semantic resources from the
Food and Nutrition domain are described. In Section III, the
methodology for food concept mapping is introduced, while
in sections IV, results of the evaluation on the FoodOntoMap
dataset are presented and discussed. The paper presents con-
clusions and future work in Section VI.

II. RELATED WORK

In this section, first an overview of food and nutrition
semantic resources is presented, followed by a summary of



text representations using state-of-the-art embedding methods.

A. Semantic resources

SNOMED CT [3] is a growing and evolving collection of
semantically organized medical terms structured as uniquely
defined concepts with multiple descriptions and synonyms,
associated between each other with relationships. It is a
resource of scientifically validated clinical content providing a
standardized way to represent clinical phrases captured by the
clinicians worldwide. Therefore, it is broadly used in clinical
documentation and reporting, enabling clinicians to record
data with enhanced accuracy and consistency. Although the
focus of SNOMED CT are clinical terms, it also contains a
considerate amount of food-related data (e.g., data on food
allergens) [4].

FoodOn [1] is a new ontology built to represent food-related
entities and to provide vocabulary for nutrition, diet, and
plant and animal agricultural rearing research. An ontology
is a formal description of knowledge as a set of concepts
within a domain and relationships that hold between them
[8]. It interoperates with the Open Biological and Biomedical
Ontology (OBO) Library [2], but also imports material from
several ontologies covering anatomy, taxonomy, geography
and cultural heritage. The ontology is aiming to cover gaps in
the representation of food-related products and processes and
is being applied to research and clinical datasets in academia
and government.

BioPortal is a web tool that provides access to an open
repository of biomedical ontologies [26]. Apart from brows-
ing, searching and visualizing the ontologies, it also offers
integrated search of biomedical data from different resources
that can be further indexed and annotated using its variety
of ontologies. Therefore, it is widely used by investigators,
clinicians, and developers to access biomedical ontologies and
to integrate data from a variety of biomedical resources, which,
among other, contain considerate amount of food-related data.

The Hansard corpus [7], [33] is a collection of text annotated
with concepts, created as part of the SAMUELS project
(2014-2016). A defining feature of the Hansard corpus is the
possibility to perform semantic searches on its data. It consists
of 37 higher level semantic groups.

FoodOntoMap [31] is a resource that contains normalized
food concepts extracted from recipes. The semantic infor-
mation for each concept is linked between different food
semantic resources, using a total of four food semantic re-
sources: Hansard corpus, FoodOn, parts of SNOMED CT and
OntoFood. OntoFood1 is an ontology with SWRL rules of
nutrition for diabetic patient.

B. Text representation with embedding vectors

Word embeddings are numerical representations of words
or phrases used in NLP. Unlike humans, computers do not
have the ability to capture the context of a word based on its
text representation. Word embeddings emerge as a necessity

1https://bioportal.bioontology.org/ontologies/OF/?p=summary

to convert numerous words in a numerical form that will
depend on their semantics and will be adequate for processing
using neural networks. A word embedding is a mapping of a
word into a real number vector in a vector space of reduced
dimensions with the order of tens to few hundreds. In general,
the values of the embedding of each word are assigned based
on their usage and are obtained by using neural networks
trained with a vast amount of text, capturing not only the
contextual relationship of the words, but also their syntactic
or grammar-based relationship. Similar words are represented
with vectors that are close to each other in the vector space,
i.e. they point to a similar direction in the predefined vector
space.

There are many approaches for word embeddings generation
using neural networks that aim to capture all linguistic and se-
mantic aspects of the words to certain degree. The embeddings
may be classified in the following manner2:

• Word embeddings: This class of embeddings represents
a closed set of words in a continuous n-dimensional vec-
tor space. Word2vec [24] is one of the pioneer algorithms
widely used for text representation. It is obtained from the
single hidden layer of a shallow neural network, traind
to predict a certain word in a given context window
(referred to as Continuous Bag of Word - BOW) or
trained to predict the context based on the word (referred
to as Skip-gram). The GloVe algorithm [27] goes one
step further by using the statistical occurrences of word
pairs to capture their global context. Both approaches
can provide pre-trained embeddings from a large corpus,
however, they fail to capture different meanings of a
single word in different positions of a sentence. They
include all different meanings in the same embedding
vector.

• Character level embeddings: Another way to create
a language model that depends on the character co-
occurrence only is to train a neural network and use its
hidden layer as a representation for the characters [19].

• Sub-word level embeddings: The word embeddings
have the open vocabulary shortcoming, i.e., if there is
a word in the text that is not present in the embedding
vocabulary, that word can not be represented in the con-
tinuous embedding space. This problem is first solved by
fastText [11], where the text is split into smaller chunks,
and a shallow neural network is trained to represent this
sub-word elements. The same idea is also used in [13].

• Pooled embeddings: Once the words or sub-words are
represented as vectors, finding a meaningful way to
represent the sentences these sub-words belong to is a
challenging task. One of the early ways of sentence rep-
resentation is to use pooling, i.e., to select the minimum,
maximum or the mean of the sentence word vectors.

• Sentence embeddings: are used when the meaning of
the entire sentence needs to be encoded in order to

2Note that the classes are not disjoint and there may be approaches that
belong to multiple classes.



understand the context of the words. The representation of
the meaning of a sentence is important because it enables
understanding of its intention without individually calcu-
lating each word embedding. It also enables comparison
of sentences, their clustering based on mutual similarity
and predicting certain properties of the sentences, such
as sentiment. Most common way of obtaining a sentence
encoder is using the special [CLS] token from the BERT
model [23], [38]. Another example of the state-of-the-
art algorithm for sentence embeddings is Sentence-BERT
[34].

• Contextualized embeddings: The contextual embed-
dings, such as ELmo [28] and BERT [13], represent
each word with different embeddings, depending on the
context of use. This approach solves the problem of
using same representation for the fruit ”Apple” and the
company ”Apple”. However, the contextual embeddings
can not be cached and used without computational cost,
since they must be generated for each new context.

• Transformer embeddings: The transformer networks
[35] opened a new era in the way we can obtain text
representation. These networks [13], [20], [21], [37] are
trained on large text corpora on various tasks related to
text representation, and their last layers are usually used
to represent the words in the sentence. These embeddings
may represent words, sub-words (in the case of [13])
and usually capture the context of the word. They are
also able to represent sentence as the value of the [CLS]
token pre-pended in front of each sentence.

C. Food Concepts Normalization

In past few years, the question for food normalization
became popular among the food and nutrition research com-
munities, which refer it as food matching. StandFood [15] is
one of the systems that tries to solve the food mapping problem
using semi-automatic classification in order to describe the
foods according their description. FoodOntoMap [31] is an-
other system that provides concept alignment against multiple
different databases.It is data normalization pipeline that is
build upon FoodIE [30] and NCBO annotator [18]. Since
FoodOntoMap provides food concept mapping to multiple
semantic ontologies and taxonomies, we are using its dataset
as a baseline for comparison of our work.

III. METHODOLOGY

Aiming to provide more robust solution for food concept
mapping, we start from the hypothesis that the language
representation of the phrases and its concepts (i.e. semantic
tag) should be close in the space of their embeddings.

To validate this hypothesis, we need a method to project
the phrases (i.e. textual name of the food) and concepts (i.e.
semantic tags) in the same embedding space. In this paper,
we use ”phrases” to represent a set of words that describe
some thing (i.e. in our case food), while the word ”concept”
is used to denote a member of some semantic resource (e.g.,
ontology or taxonomy). In Table I, we show a sample of the

TABLE I
DATASETS SAMPLES

FoodOntoMap phrases for Hansard Corpus Hansard Corpus
Phrase Concept ID Concept ID Label

... ...

CREAM CHEESE AG.01.e.02, AG.01.n,
AG.01.e, AG.01.n.18 AG.01.e.01 Butter

OLIVES AG.01, AG.01.d.03 AG.01.e.02 Cheese
BEEF AG.01.h.01.e AG.01.e.03 Fat/Oil

... ...

FoodOntoMap dataset, which we use as a baseline for the
phrase mapping, consisting of phrases and their corresponding
concepts, which may belong to one of the aforementioned
semantic resources (Hansard, FoodOn, SNOMED CT, and
OntoFood)3. The table also shows a sample of the Hansard
Corpus as a representative of the semantic resources we use
in our work. Each concept is defined with a unique concept
id and a label that describes its meaning.

By using the above-mentioned embedding algorithms to
create embedding from multiple words, for both phrases and
concept labels, we actually make projections of the phrases
and concepts in the same vector space. Hence, our goal is
to investigate if a phrase and its related concepts from any
semantic resource are close in that vector space. We achieve
this goal by choosing a phrase from the FoodOntoMap and
searching the top most similar concept embeddings in the
different semantic datasets. Then, we check the number of
these resulting concepts that match the concepts used to
describe that phrase and evaluate the precision, recall and F1
score.

IV. SYSTEM ARCHITECTURE

The proposed methodology is used to create a system that
enables searching of the most relevant food concepts for an
arbitrary phrase. The concepts supported by our systems are
the ones defined in Hansard, Corpus [7], FoodOn ontology [1]
and Snomed CT taxonomy [3].

The datasources used in our work, the embedding algo-
rithms as well as the flow of data in the mapping process
are shown in Figure 1.

In order to provide a real-time search of arbitrary phrases,
we have pre-computed embeddings for each concept from the
above mentioned datasets using multiple different embedding
algorithms, including GloVe word embeddings with mean
pulling, BERT last layer embeddings with mean pooling, Bert
sentence embeddings of last four layers, openAI GPT2 em-
beddings with mean pooling, XLNet embeddings with mean
pooling, Distil Roberta and Albert sentence embeddings4. For
implementation of the embedding algorithms we use the Flair
library [6], which provides a convenient wrappers for Word,
Sentence and Document embeddings around the Huggingface
Transformers library [36].

3There is separate file in FoodOntoMap for each semantic dataset
4We tested a wider variety of embeddings, but for clarity, we re-

port only a subset of these results. The full results can be found at:
https://gitlab.com/ristes/relation-extraction/-/tree/master/data/evaluation



Fig. 1. System Architecture

Finding a similar embedding among a large set of em-
beddings is computationally expensive task considering the
fact that each embedding has thousands of dimensions in
the vector space. To accelerate this process, we use the
Facebook’s Faiss project [17] for creating one inverted index
per dataset/embedding algorithm pair. We particularly use the
IndexIVFFlat index, which stores each vector in an inverted
file (IVF) as is, without any compression or quantisation (the
Flat part) . The basic idea behind the concept is that the vectors
are divided into clusters using k-means [22]. Each centroid,
which is a central gravity point of all points of the cluster,
is chosen as a representative of the vectors in that cluster. At
search time, instead of calculating the similarity of a given
vector to the entire dataset of vectors, its similarity to the k
centroids is checked. Once the closest centroid is found, the
similarity check is focused only on the reduced set of vectors
within the cluster it represents.

We use Inner Product as metric for similarity during index
creation and searching, but, before each embedding is stored
in the index, it is normalized using L2 norm, which in
combination with the Inner Product metric, results in Cosine
Similarity [17].

In our work, we pre-compute 21 different indexes using dif-
ferent embedding algorithm for the same dataset. This number
can be easily extended or reduced based on the embedding
algorithms of interest. Using the indexes, we created a REST
API which takes a search phrase and number k as an input
and returns the k closest concepts to that phrase in Java Script
Object Notation (JSON) format. Additionally, we provide a
simple interface for visual representation and interpretation of
the search results.

TABLE II
EVALUATION RESULTS

FoodOn Hansard Corpus Snomed CT
#res prec rec F1 prec rec F1 prec rec F1

GloVe with mean pooling
1 .75 .47 .58 .22 .12 .16 .80 .56 .66
5 .18 .56 .27 .07 .21 .11 .21 .72 .32
10 .10 .60 .17 .05 .25 .08 .11 .74 .18
20 .05 .62 .09 .03 .33 .05 .05 .74 .10
30 .03 .63 .06 .02 .39 .04 .04 .74 .07

Bert last layer with mean pooling
1 .79 .50 .61 .01 .04 .02 .82 .58 .68
5 .16 .51 .25 .03 .02 .02 .17 .59 .26
10 .08 .52 .14 .01 .05 .01 .08 .59 .15
20 .04 .53 .08 .01 .06 .01 .04 .59 .08
30 .03 .53 .05 .00 .07 .01 .03 .59 .05

Alberta sentence embedding
1 .79 .49 .61 .02 .01 .01 .81 .57 .67
5 .16 .50 .24 .01 .02 .01 .16 .58 .26
10 .08 .50 .14 .01 .04 .01 .08 .58 .14
20 .04 .51 .08 .00 .05 .01 .04 .58 .08
30 .03 .51 .05 .00 .06 .01 .03 .58 .05

Distil Roberta sentence embedding
1 .07 .05 .06 .03 .02 .02 .18 .12 .15
5 .02 .06 .03 .01 .03 .02 .05 .17 .08
10 .01 .07 .02 .01 .04 .01 .03 .19 .05
20 .01 .08 .01 .00 .05 .01 .01 .20 .03
30 .00 .09 .01 .00 .07 .01 .01 .21 .02

GPT2 sentence embedding
1 .00 .00 .00 .00 .00 .00 .03 .02 .02
5 .00 .00 .00 .00 .00 .00 .02 .05 .02
10 .00 .01 .00 .00 .01 .00 .01 .07 .02
20 .00 .00 .00 .00 .01 .00 .01 .10 .01
30 .00 .01 .00 .00 .00 .00 .01 .12 .01

V. EVALUATION

In order to evaluate our methodology, we used FoodOn-
toMap dataset as ground truth for mapping phrases to their
corresponding semantic concepts in each of the semantic
datasets Hansard Corpus, FoodOn ontology and Snomed CT.
Table I shows that in FoodOntoMap, for each phrase, there
can be multiple mapped concepts ids, separated with comma.
In our evaluation, we iterate over the FoodOntoMap’s phrases
and use its embedding to find the n most similar concepts in
the previously generated semantic datasets’ indexes. Once we
obtain the results, we compare them with the FoodOntoMap’s
concept ids of the corresponding phrase, and we calculate the
true positives (concept ids present in the results and in the
gold standard), false positives (present in the results, but not
in the gold standard) and the false negatives (present in the
gold standard, but not in the results).

To make the results easier to observe, we created a web
application 5 that displays the true positives, false positives
and true negatives for each phrase in FoodOntoMap and a
number of closest matching concepts k. An example of the
results obtained for the phrase CREAM CHEESE with number
of matching embeddings k = 4 is shown in Figure 2.

Once we obtain the number of true positives, false neg-
atives, and false positives, we evaluate the precision, recall

5The web applications is available at: wp.finki.ukim.mk/food-concept-
index/



Fig. 2. Evaluation result interface

and F1 score in search scenarios with n = 1..10, 15, 20
and 30 closest concepts from each index6 The evaluated
results using the GloVe algorithm are shown in Table II. The
complete list of the results for each algorithm and dataset
can be found at: https://gitlab.com/ristes/relation-extraction/-
/tree/master/data/evaluation.

During the evaluation, we came to the following observa-
tions:

• We obtain best results in terms of recall for the GloVe
word embeddings with mean pooling for all 3 datasets, no
matter how many results are obtained by the algorithm.
We believe that this is due to the small number of words
in each of the phrases, where there is very little contextual
information. For instance, when 5 results are returned
by the search, the recall of the GloVe embedding with
mean pooling is 72%, 56% and 21% for the Snomed CT,
FoodOn and Hansard concepts correspondingly.

• In terms of F1 score, the best results are by the GloVe
embeddings with mean pooling. The BERT contextual
embeddings of its last layer with mean pooling give better
results only when one result is obtained by the search for
the Snomed CT and FoodOn concepts.

• The sentence embeddings of BERT and Alberta return
almost identical results, which is not surprising knowing
that Alberta transformer is an extension of BERT.

• The sentence embeddings of XLNet, GPT2 and Distil
Roberta give significantly worse results than the other
embedding algorithms. These results may be expected
for Distil Roberta, since it is designed to compress the
representation of the Roberta transformer, but XLNet and
GPT2 were used without any restrictions.

• One general observation is that all evaluated algorithms
are failing to represent the multiword phrases close to the
words of which they are composed. One obvious example

6In the remaining of the text, for brevity we refer the number of the selected
closest candidates as number of search results.

is given in Figure 2, where Cream and Cheese concepts
are not in the top 4 results for CREAM CHEESE.

VI. CONCLUSION

Although text is relatively easy to be understood by a
humans, it requires advanced methodologies for its structuring
as it is insufficient to represent its basic elements such as words
or sentences only. It is far more important to be able to relate
these basic elements with underlying phrases, thus preserving
the semantic and syntactic information of the text. In this
paper, we presented a new approach of linking phrases to their
conceptual representations using the similarity of different
phrase representations.

According to the evaluation, the best results were obtained
using the GloVe embedding algorithm with mean pooling.
Even though these embeddings have shortcomings, they can
be really helpful in the process of classification of new
text phrases with respect to concepts from ontologies and
taxonomies (i.e. semantic tags). This approach is robust and
does not depend on any hand-crafted rules that are domain
dependant. Furthermore, this approach can leverage the im-
provements in the area of phrases representation, where the
only thing that is needed to use new representation is to build
an index of the concepts of interest using that embedding
algorithm.

In our future work, we plan to improve the search algorithm
to include the separate words in each concept, in order to better
represent the multi word phrases. Also, we plan to include the
concepts relationships in their representation.
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