
Static analysis of source code written by novice
programmers

Tomche Delev, Dejan Gjorgjevikj
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University
Skopje

tdelev@finki.ukim.mk, dejan@finki.ukim.mk

Abstract— In this paper we are reporting the finding on the
use of a static analysis of C source code written by students
learning to program. Two different tools for static code analysis
were used to analyze the solutions submitted by the students on
the partial exams and exams from the introductory course in
programming in a three year period. We have collected, analyzed
and compared most common errors reported by both tools. We
further investigate if the available checks provided by these tools,
often used in professional software development practices to find
bugs and improve the code quality, can also help novice
programmers in tracking down and resolving their problems in
the code or have any other value in the process of learning
programming.

Keywords— static analysis; novice programmers; programming
errors;

I. INTRODUCTION

The term static analysis refers to any process of assessing
source code without executing it. It is often used by
experienced programmers to find bugs, memory leaks or other
potential problems in programs. The information reported from
static analysis is used to improve code quality, security,
robustness, and in some occasions, cyclomatic complexity.
Example of errors and problems discovered with static analysis
are uninitialized variables, unreachable code, resource leaks,
unused variables and many others. Static analysis is also used
in dynamically typed programming languages to check for
coding standard rules and type errors. In some cases errors
discovered with static analysis are indication of serious flaws in
program logic and can be potential cause for bugs. For this
reason in many complex software projects, the static analysis is
automated by including it in the build process. The
programmers on the project can use the reports from this
analysis to find and fix bugs or improve the code quality. They
can also use it to learn about hidden features of the
programming language, leading to bugs or unusual behavior of
the program [1].

All syllabi for CS majors as well as most syllabi for
engineering and science majors do include a course for
programming in the introductory year of university studies.
Although the freshman now days are much more exposed to
computers and technology during high school (secondary
education) and some of them have even taken programming
courses in high school, programming has not become easier
subject. Most researchers agree that in order to master

programming one needs some theory and a lot of practice
(learning by doing). That is why most programming courses
are organized as formal lectures plus a significant number of
classes where the students are challenged to solve problems by
themselves, usually denoted as laboratory exercises. From the
students’ point of view this is a form of deliberate practice that
is not just simple repetition of the exercise, but challenging
oneself with more involving tasks. These tasks should push
students beyond their current abilities, and while working on
them, they should analyze their performance during and after,
and learn and correct the mistakes they are making.

Introductory courses in programming are usually enrolled
by large number of students and most of them are with very
limited or no programming experience at all. We refer to the
students that might have some limited previous experience, or
have never before studied or practiced programming as novice
programmers. Having different background knowledge and
aptitude for programming, novice programmers have
documented difficulties in learning and understanding
programming. These difficulties and misconceptions are often
manifested when they try to write programs as part of the
formal assessment and examination. Analyzing the source code
written by novice programmers can help in discovering the
most common errors they make, concepts they find difficult or
misconceptions they form.

In this paper, we are exploring the possibility of introducing
and applying static analysis on source code written by novice
programmers. The goal of this work is to identify the most
common error they make and investigate if using tools for
static analysis can be valuable to them. We applied two tools
for static analysis on dataset of solutions written by novice
programmers as part of their exams in a three year period
(2013-2015).

The rest of the paper is organized as follows. In section II
we present the common challenges of novice programmers
when leaning programming and the related research in this
area. The used tools for static analysis are described in section
III and in section IV, the methodology of the conducted
experiment is explained. Finally the experimental results are
presented and discussed in section V, and in the last section, a
short summary and conclusion is given.

978-1-5090-5467-1/17/$31.00 ©2017 IEEE 25-28 April 2017, Athens, Greece
2017 IEEE Global Engineering Education Conference (EDUCON)

Page 824

II. LEARNING PROGRAMMING CHALLENGES BY NOVICE
PROGRAMMERS

Programming is an individual skill acquired through
practice and experience over time. The novice learner, in order
to learn to program, must learn the syntax of a programming
language and master many skills and concepts, such as
constructing a mental model of a notional machine [2]. Novices
start writing programs with a very little idea of the properties of
the notional machine implied by the constructs of the
programming language they are learning [3]. There are many
documented cases where novices form faulty mental model of
the program dynamics originated from their limited pre-
programming knowledge [4]. These limitations can cause
difficulties in constructing correct programs and solving
problems. For example they can have difficulties in perceiving
a piece of code as isolated component rather than an active
component of dynamic process that occurs at runtime [5].

To apply static analysis on source code written from novice
programmers, first we should introduce the profile of the
novice programmer along with their mental model. The novice
programmers face many well documented learning challenges
in the process of learning programming [6, 7] that we should
explore before applying or introducing any new technique in
their learning process.

By studying the difficulties, misconceptions or common
errors the novice programmers are making we can achieve
better understanding of the problem-solving strategies and
highlight the difficult aspects of programming. Furthermore,
such studies can spark contributions in refining of existing or
invention of new programming languages, training tools and
teaching methods. One approach on identifying the
misconceptions of programming is by interviewing students
using think-aloud protocol on closed list of problems covering
different concepts such as control flow, types, conditionals and
others [8]. Other approach can be by polling the students with
questionnaire on different topics and concepts. For example
one such study [7] shows that topics that rely on clear
understanding of pointers and memory-related concepts proved
to be the most difficult. The approach we have taken in this
paper was to collect and process the reports of applying static
analysis on the code written by novices, and then quantify and
analyze the reported errors. The analyzed source code files are
solutions submitted by novice programmers on problems given
on partial exams and exams.

For many novice programmers, the first interaction with the
tools needed to compile, run and test their program is
challenging. To address this issue, in the past years in the field
of teaching and learning programming many automated
programming assessment systems are gaining popularity [9].
Such systems are considered to significantly lower the entry
barrier for novice programmers caused by complicated tools or
integrated development environments (IDE's). Our solution to
these problems, is a system named Code [10], developed at the
Faculty of Computer Science and Engineering at the Ss. Cyril
and Methodius University in Skopje, used for automatic
assessment and management of students' programming
exercises and exams. The system provides a simple web-based
user interface, where the students can write, run and test their

solutions (fig. 1). The solutions are automatically stored,
compiled and executed on a central server. One of the main
advantages of the system is the automatic assessment with
immediate feedback, which can help both, the course
instructors and the students. Providing timely and informative
feedback in such systems is important component [11]
especially in situations when direct feedback from instructors is
not feasible. The feedback can vary from plain compilation
output, to hints of errors in the program, or listing and
comparing the test input data and the expected output. The type
of feedback provided is important and can affect the strategy
imposed in the process of constructing a working solution.

One idea investigated in this work is the possibility of using
static analysis tools to enrich the feedback with valuable
information for potential bugs and errors. Static analysis can be
used to check programming style, program errors (syntax or
semantic), software metrics assessment, structural and non-
structural similarity analysis, keywords analysis, plagiarism
detection and diagram assessment [12]. It has also been
successfully used to help students writing better code [13].

Fig. 1. Web-based interface of the automatic assessment system Code

III. STATIC ANALYSIS TOOLS

 Static analysis is performed with specialized tools
developed only for that purpose. A static analysis tool can
explore large number of “what if” scenarios without having to
go through all the computations necessary to execute the code
for all scenarios. Also, good static analysis tools provide a fast
way to create complete and consistent evaluation report of the
source code. Most often these tools are specialized for
evaluation of source files written in single programming
language. However, there are some more general tools capable
of evaluating source files in multiple, often similar
programming languages.

The source code of the solutions analyzed in this study was
written in the C programming language. We have tried the
following tools for static analysis of C code: Clang Static
Analyzer, CppCheck, Splint, OClint and the first two were
chosen for this analysis. Our motivation was to select the most
appropriate ones for our context of introduction level of
programming and the programming language C, and not to
review tools for static analysis of C source code. The available
checks and the reporting of errors these tools can provide, also
was an important factor in this decision. Clang Static Analyzer
and CppCheck were chosen as they were found to provide
distinct types of checks and warnings about potential source
code problems. The first one also includes some recently

978-1-5090-5467-1/17/$31.00 ©2017 IEEE 25-28 April 2017, Athens, Greece
2017 IEEE Global Engineering Education Conference (EDUCON)

Page 825

introduced experimental checkers relevant to our research, and
also it's used as underlying checker of one of the remaining
static analysis tools OClint.

A. Clang Static Analyzer
The Clang Static Analyzer [14] is a source code analysis

tool part of Clang which is a C, C++ and Objective-C front-end
of the LLVM compiler [15]. The Clang Static Analyzer can
spot errors and bugs with different degrees of analysis
sophistication, mostly using the control-flow graph of the
program. Finding errors and potential bugs is implemented by
various checkers that are grouped in the following six groups:
core checkers, C++ checkers, dead code checkers, OS X
checkers, security checkers and UNIX checkers.

In our analysis we used the core checkers which model core
language features and perform general-purpose checks such as
division by zero, null pointer dereference, usage of
uninitialized values and errors. We also used dead code
checkers and some of the experimental checkers. Example of
some of these checks are shown in table 1.

B. CppCheck
 CppCheck is a static analysis tool for C/C++ code which

primarily detects the types of bugs that the compilers normally
do not detect, such as: out of bounds checking, memory leaks
checking, detect possible null pointer dereferences, check for
uninitialized variables, and few others. CppCheck can also be
extended with simple patterns, defining rules for functions or
scripts.

TABLE I. EXAMPLE CHECKS FROM CLANG STATIC ANALYZER

Name, Description Example

core.CallAndMessage (C, C++,
ObjC)

Check for logical errors for
function calls (e.g., uninitialized
arguments, null function pointers).

void f(int x);
void test() {
 int x;

f(x); // warn: passed-
by-value // arg contain
uninitialized data
}

alpha.deadcode.UnreachableCode
(C, C++, ObjC)

Check unreachable code.

int test() {
 int x = 1;
 while(x);
 return x; // warn
}

IV. METHODOLOGY

The study is based on the data collected during an
introductory programming course “Structured programming”
using the C programming language. The enrollment (including
re-enrollment) on this course reaches up to 1000 students. The
course covers the basic programming constructs and structured
programming concepts in 14 weeks with 2 forty-five minutes
long lectures held by professors and 2 equally long problems
solving sessions given by teaching assistants. The concepts
covered are reading and writing to I/O, flow control, iteration
and recursion, arrays (two-dimensional), pointers and reading
or writing files. Most of the example problems can be solved
by constructing a short and simple straightforward algorithm.

Students also participate in 10 (hour and a half long) hands-
on laboratory sessions where they are presented with several

exercise problems that they supposed to solve individually. The
assessment is organized in two partial exams and a final exam
(during the semester), followed by two additional final exams
sessions during the academic year. The exams usually include
up to four problems, on which the students are expected to
write complete working solutions. Exams are taken in
controlled laboratory environment, where students can write,
run and test their solutions in the web-based environment for
programming and automatic assessment Code. When they open
a problem in the system Code, they have a side by side view of
the problem text and a web-based text editor (fig. 1), where
they can write their solution. Students also can use other editors
or IDE’s to compile and execute their solutions on the local
machine, but are required to post the final solution in the
system. Once a student has written a solution, he/she can make
one of two possible actions, run or submit. On the action run,
the solution is first compiled and then if the compilation is
successful, it’s executed with a sample test input which is
visible in the problem view. In case of compilation errors the
output of the compiler is presented, and otherwise the output of
the execution is presented next to the expected output for the
given test input. The students can visually compare both, the
output from the execution of their program and the given
expected output. On the submit action, the solution is compiled
and then executed with multiple test cases as input. For each
test case the output of the execution of the students’ solution is
compared to the expected output for that test case, and a report
of the comparison is presented to the student. Some of the test
cases can be hidden (the input, the expected and actual output
are not shown) and only the result (passed/failed) is reported.
Students can make unlimited number of submit attempts.

On each run or submit attempt the system automatically
provides three types of feedback. The first type of feedback is
the output from the compilation process before execution with
the standard report from the GCC or Clang compiler (fig. 2).

Fig. 2. Compilation output feedback

The second type of feedback is the report from dynamic
analysis of their solutions (fig. 3). The dynamic analysis is
testing the correctness of the solution by comparing the output
from the execution with a predefined test cases for the problem.
Also, as third type of feedback an HTML report from
analyzing the source code with the Clang Static Analyzer is
available.

Fig. 3. Dynamic analysis feedback for solution.

978-1-5090-5467-1/17/$31.00 ©2017 IEEE 25-28 April 2017, Athens, Greece
2017 IEEE Global Engineering Education Conference (EDUCON)

Page 826

In this study we have assembled a dataset containing
students’ solutions on the problems given on the exams in the
academic years 2013, 2014 and 2015. To build the dataset, a
total of 13,960 source code files submitted as final solutions to
the exam problems were extracted from the system Code. We
used the selected tools for static analysis on the full dataset,
and analyzed the generated reports. The Clang Static Analyzer
can only be performed on source code files that can be
compiled successfully, while all source code files (including
those that cannot be compiled) can be processed with
CppCheck. Both tools can be used as command-line programs
that can be executed on a group of files and they report the
results in semi-structured format. The Clang Static Analyzer
also outputs a visual report in HTML file, where the found
errors are described in more details. The data used for reports
was extracted by processing and parsing the reports generated
by using the static analysis tools on the dataset.

From our observations on a sample of the results from the
exams, we can identify four groups of students by their
performance. The first and usually small group of talented
students, with almost perfect score, are the ones who solve the
exam problems without any obstacles. The second group,
students who passed the exam with solving at least one
problem without mistakes, consist of students who can solve
most of the problems with some obstacles, but might make
small mistakes on the path. The third group of students, is
identified as the group that can write some working code for
simple assignments, but have problems to create or deduce a
clear mental model for more complicated programming
constructs such as arrays, nested loops or recursion. The fourth
and last group, cannot write any working code and in most
cases is unmotivated to perform.

V. EXPERIMENTAL RESULTS

A. Compilation results
As a first step of the analysis, compilation was attempted

on each solution of the dataset. Here we report the results of
compilation success rate for each exam. Only successfully
compiled solutions were used in the further analysis with the
Clang Static Analyzer. The results showed that almost 25% of
the source files contained at least one compilation error.
Significant percentage of them were empty or contained some
free text (detailed results are shown in table 2). Errors in
compilation are indication of lack of knowledge of the syntax
of the C programming language. Also some students have
manifested difficulties in understanding and then acting upon
the compiler messages. There are also few cases when students
are not motivated or interested in writing solution of the
problem, so they write random content that does not compile.

TABLE II. PERCENTAGE OF SUCCESSFULLY COMPILED SOLUTIONS

Year Partial
exam 1

Partial
exam 2

January
exam

June
exam

August
exam

2013 74.1% 81.7% 73.4% 69.6% 73.3%
2014 74.8% 81.6% 71.8% 68.3% 73.3%
2015 79.1% 87.0% 64.8% 64.5% 75.8%

On figure 3 the overall compilation success over the time of
one year is shown, starting from the first partial exam in
November and ending with the last exam in August. The
highest rate in compilation on the second partial exam, can be
explained by the fact that only students that scored over 40%
on the first partial exam are allowed to take the second. These
are usually students that have already proven their basic
knowledge in programming and the programming language
syntax. The final exam is only taken by the students that have
scored less than the passing minimum of the partial exams.
Also, noticeable is the consistency in the change of the
compilation success rate on same exams across the analyzed
period of three years.

Fig. 4. Compilation success over academic year

B. Clang Static Analysis report results
Running Clang Static Analysis tool on the dataset,

produced detailed report with all the detected errors for each
source file containing errors. The errors are grouped by two
types of checks, denoted as Dead store and Logic errors.

Dead store check includes type of checks such as dead
assignment, dead initializations or dead increment. Dead
assignment (fig. 5) is a common error where a variable is
assigned some value, and later in the code the assigned variable
is never used. Dead initialization is a similar error where
variable is initialized with some value, and in the rest of the
code that variable is never used. Dead increment is a type of
error where a variable is mutated (incremented or
decremented), and then this new value of the variable is never
used. The distribution of these errors it’s shown on figure 6.
These kind of errors such as incorrect variable declaration and
usage are very common between novice programmers and in
many cases are serious indication of a wrong solution. Early
reporting on such errors can be helpful in finding a potential
bug caused by this kind of errors. From all the errors reported,
34% turned out to be dead store errors.

978-1-5090-5467-1/17/$31.00 ©2017 IEEE 25-28 April 2017, Athens, Greece
2017 IEEE Global Engineering Education Conference (EDUCON)

Page 827

Fig. 5. Dead assignment error

Fig. 6. Dead store errors distribution

Dead code is experimental check for unreachable code,
which is a block of code that will never be executed, often as a
consequence of previous endless loop or incorrect branching
condition. This type of error is difficult to find and determine
in compilation time using only static analysis. For example
using the function scanf for reading from standard input can be
a source for false positives or missed endless loops. This error
(when found successfully) is a clear indication of wrong
solution, or wrong implementation of an algorithm. This can be
very useful information for novice programmers, because it is
type of error not commonly found by compilers. To be able to
find these kind of errors, which are usually found at runtime,
requires very good understanding of the program dynamics and
execution flow. Example of reported dead code error is shown
on figure 7.

Fig. 7. Dead code error

Logic errors are the most common type of errors made by
novice programmers. As shown on table 3, 66% of all errors
are logic errors. Of all logic errors detected, following four
types are the most common: result of operation is garbage or
undefined, uninitialized argument value, assigned value is
garbage or undefined and out-of-bound access. The precise
distribution can be seen on figure 9, where the fifth group
denoted as “other” includes all other reported errors. Errors
such as these are related with concepts such as conditional
logic, arithmetic operations, and variable initializations and
updating. The Clang Static Analyzer does a very good job in
tracking the logic errors through the code, and traces the steps
that have caused the error (as shown on figure 8). The report
produced by this analyzer can be especially helpful to novices
not just for locating the error, but also for learning and
understanding how it happened in the first place.

Fig. 8. Logic errors

The total number of errors and percentages of source files
with at least one error found with static analysis using the
Clang Static Analyzer are presented on table 3. Significant
percentage of the dead store error were false positives, caused
by the above mentioned problem with the scanf function. Still,
the large numbers are showing that using this tool can be
helpful for students to find many types of errors, they often fail
to notice with standard compiler or just by running and
inspecting the code.

TABLE III. CLANG STATIC ANALYZER ERRORS REPORT

Year Dead store
errors

Logic
errors

Total solutions
analyzed

% of solutions
with at least one

error

2013 784 2,369 3,333 54.06%

2014 827 2,646 3,552 57.48%

2015 1,001 2,675 3,477 61.75%

Total 2,612 (34%) 7,690 (66%) 10,362 57.56%

978-1-5090-5467-1/17/$31.00 ©2017 IEEE 25-28 April 2017, Athens, Greece
2017 IEEE Global Engineering Education Conference (EDUCON)

Page 828

Fig. 9. Logic errors distribution

C. CppCheck results
CppCheck static analysis tool produces reports on 5 groups

of errors: performance, style, warning, portability and error. In
our study we ignored the performance and portability checks as
not relevant for the novice programmers and focused only on
the other three types. In table 4 the most common types of
checks reported by CppCheck are summarized.

TABLE IV. TYPES OF CHECKS FROM CPPCHECK

Type Example

Style
Unused variables
The scope of variable ‘x’ can be reduced
Variable ‘x’ is assigned a value that is never used
Variable ‘x’ is not assigned a value

Warning

%d in format string (no. 1) requires 'int *' but the
argument type is 'int'
printf format string requires 0 parameters but 1 is given
%d in format string (no. 1) requires 'int' but the argument
type is 'int *'
String literal compared with variable 'n'. Did you intend
to use strcmp() instead?
Comparison of a boolean expression with an integer
other than 0 or 1

Error
Uninitialized variable
Invalid number of character ({) when these macros are
defined
Array index -1 is out of bounds

The errors reported from this tool includes unused
variables, wrong comparison expressions, array indexes out of
bounds and others that are common between novice
programmers. The results on table 5 are showing that novice
programmers are making large number of these errors, with an
average of more than 2 (style/warning/error) per solution.

TABLE V. RESULTS FROM STATIC ANALYSIS USING CPPCHECK

Year Total solutions Style Warning Error

2013 4,491 5,512 1,772 2,183

2014 4,815 6,435 1,139 2,609

Year Total solutions Style Warning Error

2015 4,654 6,381 1,394 2,645

VI. DISCUSSION AND FUTURE WORK

Debugging and finding errors is proven to be very difficult
task, which is particularly difficult and frustrating for novice
programmers. Students have indicated that the easiest bugs to
fix are those found by the compiler or some other tool. This
suggests that for students, locating bugs is more difficult than
fixing them, or that the types of bugs found by the compiler
and other tools, which are most often construct-related, are
easier to fix than other bugs [16]. The results reported in this
paper, are confirming these findings, by showing that tools for
static analysis can be helpful to novice students in finding and
understanding bugs. Incorporating such tool in the students’
learning environment for programming such as Code, can bring
multiple advantages. It can help students to find logic errors,
learn about them and consequently make them better in the
debugging process.

Static analysis is proven and widely used tool by
professionals to find bugs and code smells in large code bases.
It is mostly used to help avoiding bed practices or find and
track down bugs. In this study we have used two industry tools
for static analysis to process the source code written from
novice programmers during exam sessions. The results are
confirming that novice programmers make large number of
mistakes such as “uninitialized variable”, or styling types of
error such as “unused variable”. Most of these errors are left
unnoticed by novices, and are often cause for wrong solutions,
even when their initial idea for the algorithm is correct. This
study shows that including static analysis in the learning
process can have value, mostly because it can help novices in
finding individually many common errors they make. How will
they actually accept and act on the reports on the errors can be
an interesting question we can try to answer in some future
work.

ACKNOWLEDGMENT

The work presented in this paper was partially financed by the
Faculty of Computer Science and Engineering at the Ss. Cyril
and Methodius University in Skopje, Macedonia.

REFERENCES

[1] Emanuelsson, P., Nilsson, U.: A comparative study of industrial static
analysis tools. Electronic notes in theoretical computer science 217, 5–
21 (2008).

[2] Sorva, J.: Notional machines and introductory programming education.
ACM Transactions on Computing Education (TOCE) 13(2), 8 (2013)

[3] Du Boulay, B., O'Shea, T., Monk, J.: The black box inside the glass box:
presenting computing concepts to novices. International Journal of Man-
Machine Studies 14(3), 237-249 (1981)

[4] Bonar, J., Soloway, E.: Preprogramming knowledge: A major source of
misconceptions in novice programmers. Human-Computer Interaction
1(2), 133-161 (1985)

[5] Eckerdal, A., Thun, M.: Novice java programmers' conceptions of object
and class, and variation theory. In: ACM SIGCSE Bulletin. vol. 37, pp.
89-93. ACM (2005)

[6] Lahtinen, E., Ala-Mutka, K., Jarvinen, H.M.: A study of the dificulties
of novice programmers. In: ACM SIGCSE Bulletin. vol. 37, pp. 14-18.
ACM (2005)

978-1-5090-5467-1/17/$31.00 ©2017 IEEE 25-28 April 2017, Athens, Greece
2017 IEEE Global Engineering Education Conference (EDUCON)

Page 829

[7] Milne, I., Rowe, G.: Difculties in learning and teaching programming
views of students and tutors. Education and Information technologies
7(1), 55-66 (2002)

[8] Kaczmarczyk, L.C., Petrick, E.R., East, J.P., Herman, G.L.: Identifying
student misconceptions of programming. In: Proceedings of the 41st
ACM technical symposium on Computer science education. pp. 107-
111. ACM (2010)

[9] Ala-Mutka, K.M.: A survey of automated assessment approaches for
programming assignments. Computer science education 15(2), 83{102
(2005)

[10] Delev, T., Gjorgjevikj, D.: E-lab: Web based system for automatic
assessment of programming problems. Web proceedings ICT-
Innovations (2012).

[11] Venables, A., Haywood, L.: Programming students need instant
feedback! In: Proceedings of the 5fth Australasian conference on
Computing education-Volume 20. pp. 267-272. Australian Computer
Society, Inc. (2003)

[12] Rahman, K.A., Nordin, M.J.: A review on the static analysis approach in
the automated programming assessment systems. In: Proceedings of the
national conference on programming. vol. 7 (2007)

[13] Truong, N., Roe, P., Bancroft, P.: Static analysis of students’ java
programs. In: Proceedings of the Sixth Australasian Conference on
Computing Education-Volume 30. pp. 317–325. Australian Computer
Society, Inc. (2004).

[14] Kremenek, Ted. "Finding software bugs with the clang static analyzer."
California: Apple Inc (2008).

[15] Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong
program analysis & transformation. In: Code Generation and
Optimization, 2004. CGO 2004. International Symposium on. pp. 75–
86. IEEE (2004)

[16] Fitzgerald, Sue, et al. "Debugging: finding, fixing and flailing, a multi-
institutional study of novice debuggers." Computer Science Education
18.2 (2008): 93-11

978-1-5090-5467-1/17/$31.00 ©2017 IEEE 25-28 April 2017, Athens, Greece
2017 IEEE Global Engineering Education Conference (EDUCON)

Page 830

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

