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Abstract. Analyzing huge amount of data are a big challenge. On one hand we 
are faced with the problem of storing a large amount of data, and on another to 
process it in a reasonable or even real time. Real time analytics can be defined 
as the capacity to use all available enterprise data and sources in the moment 
they arrive or happen in the system. In this paper, we present an infrastructure 
that we have implemented in order to analyze data from big log files in real 
time. The main components of the infrastructure are Redis, Logstash, 
Elasticsearch and Kibana. Redis is used for temporary buffering of the log data, 
Logstash utilizes different filters to manipulate and analyze the data, 
Elasticsearch is used for indexing and storing the data and Kibana is a user in-
terface used to visualize the results. We explore implementation of several fil-
ters in order to post-process the log information and produce various statistics 
that suit our needs in analyzing log files containing SQL queries from a big na-
tional system in education. The post-processing of the SQL queries is mainly 
focused on preparing the log information in adequate format and information 
extraction. The purpose of the analysis is to monitor performance and detect 
unusual behavior in order to alert or prevent possible unwanted activities, or to 
develop (in future) triggers that can indicate or even prevent possible problems 
in real time. 

Keywords: Big data, log data, real time processing, Redis, Logstash, 
Elasticsearch, Kibana. 

1 Introduction  

With the increased number of internet users, the need for analyzing data and specifi-
cally log data is increasing too. The two general requirements of big data projects are 
common: analysis of the (near) real time information extracted from a continuous 
inflow of data and persisting analysis of a massive volume of data. Log management 
is complex and time consuming process, even harder when we have to deal with big 
log files that came in real time. Log file is a file that records all the events that hap-
pened during one software or/and operating system is running. Also, it may register 
all the exchange of personal messages between different users under some communi-
cation software. The content of log files could be diverse, e.g. it could be structured, 
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semi-structured and weakly structured. Our special interest is log files that contain 
SQL queries. 

Building an infrastructure for analyze of big log files in real time is a computa-
tional, storage and scalability challenge. To make proper choice of infrastructure we 
have done extensive investigation reported in [7], [8], [9] and [10]. In this paper, we 
present adjusted infrastructure proposed by Ian Delahorne [2]. Among open source 
and free software tools, we find it appropriate because it is possible to modify it when 
needed, by adding various other components (like Hadoop), or scale up or down by 
adding (duplicate, triplicate,…) some of existing components. 

Study and experiments are motivated by need to use such an infrastructure for ana-
lyze of the log files from a system called e-Dnevnik (ednevnik.edu.mk1). e-Dnevnik is 
an electronic system for managing the data records of students in Macedonian 
schools. System enables daily communication between teachers, parents and students 
and various statistical analyzes used by Ministry of education and research of RM and 
other public institutions. System receives a big number of requests during a day and 
analyze of these requests is required before they are saved to database in order to 
reduce the amount of logs that is necessary to be saved. The idea is to save into data-
base just the information that is of interest for future processing and other to be ig-
nored. Even more, analyze of log files in real time can signalize and detect errors, 
track CPU usage, monitor parameters and similar. If some of the parameters rise 
above expected values, or error occurs, built-in (in future) triggers will indicate or 
even prevent possible problems in real time.  

Paper is structured as follows: In the second chapter we explain which are the 
components and functions of this infrastructure; in the third chapter, we demonstrate 
pre-processing of the SQL queries contained in log files and usage of several Log-
stash filters important for real time analytics; in the fourth chapter we implement the 
infrastructure for real time analysis of e-Dnevnik database log file; the last chapter is 
the conclusion for our work done thus far, including also ideas for future work.  

2 Infrastructure for analyzing log data in real time 

With aim to deal with big log files in real time produced by PostgreSQL server in 
order to analyze query performance, we start with the solution proposed by Ian Dela-
horne [2]. Since Elasticsearch [5], together with Logstash has evolved during the past 
several years, we include in our architecture several new and remove several unneces-
sary components. Our proposed architectural is shown in Figure 1. This architectural 
design is based on pipeline event processing, divided in following phases: input (col-
lects and manages events and logs), buffering, decode/pre-process (extract structured 
data into variables, parse), filter (modify, extract information) and output (ship the 
data for storage, index, search and visualize). 

An important characteristic of this architecture is the capability to scale up/out of 
every component, depending on the input stream size and rate, by running one or 

                                                           
1  http://ednevnik.edu.mk/ 
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more of its components as a separate threads/servers. For example, we can scale out 
the input phase with three shipper servers as shown in Figure 1, or we can scale up the 
Logstash filtering server on a bigger machine with more CPU cores/RAM. 

 
Fig. 1. Components of infrastructure for big data log analytic in real time 

Flexibility is achieved also by possibility of adding various additional components 
as Hadoop, Cassandra, statistical or graphical tools like Statsd, Graphite and others. 
Generally in most cases when we run the Logstash server there will be two broad 
classes of Logstash host [3]: 

 The first one is the host which runs the Logstash agent as an event "shipper" that 
sends application, service and host logs to a central Logstash server. 

 The second one is central Logstash host which runs a combination of components 
of this architecture for pre-processing and filtering of events. 

Broker (usually Redis [12]) acts as efficient temporary buffer for logs. This espe-
cially is important to enable interruptions in the processing of the log events in an 
occasion of upgrade process of the Logstash instances, or in the case of an unexpected 
raise of event size and number. 

2.1 Logstash 

The main component of the infrastructure is Logstash [4]. It is written in JRuby and 
runs in a Java Virtual Machine (JVM) [4]. It is easy to deploy, as a single JAR file 
that can be started directly using a JAVA SE VM (no Apache Tomcat Containers are 
needed). Its architecture is simple comparing with other similar software architectures 
since it consists of a three phase pipeline (input, filter, output) and it provides an easy 
way of extension of functionalities in each phase using plugins. 

Input phase collects the logs and sends the collected events to the filter phase. Logs 
can generally arrive from various sources: Files, TCP/UDP files, Syslog, Microsoft 
Windows EventLogs, STDIN, Key-value stores and a variety of others. In our case 
log file includes Postgres SQL CSV log files and Key-value stores (Redis [12]).  

Logstash comprise a large collection of filters which enable us to extract structured 
data into variables, parse, modify and enrich the data, before they are pushed to the 
Elasticsearch.  
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2.2 Elasticsearch / Kibana 

Elasticsearch enables efficient indexing and storing of the event logs, and enables a 
full text search on them. It is an open-source distributed search engine library, built on 
top of Apache Lucene [11]. ElasticSearch [5] allows us to implement store, index and 
search functionality and as such help us in easier and more efficient computation of 
various data analytics. ElasticSearch is a NoSQL data store where data are stored as 
documents. Although it is mainly used by Java applications, the important thing is 
that applications need not to be written in Java in order to work with ElasticSearch, 
since it can send and receive data over HTTP in JSON to index, search, and manage 
our Elasticsearch cluster.  

The last component is Kibana [6] which is a HTML/JS frontend web interface to 
Elasticsearch for viewing the log data. The beauty of Kibana is that we can easily 
search in the data with different queries, produce charts, histograms and other visual 
products [2]. 

3 Processing of  SQL queries  

Processing of database transaction logs presents a big challenge due to their massive 
volume. The main target of the SQL queries analytics is to gather information and 
detects anomalies in query performance on an operational level. This means that we 
want an early detection of performance degradation of SQL queries in real time and 
alert adequately in order to remove the possible causes. 

3.1 Log data pre-processing 

In order to get more realistic results we must do a SQL queries pre-processing by 
performing a normalization procedure on them. The normalization of the SQL queries 
tries to remove all data and parameters from the queries in order to gather better 
grouping/clustering of SQL query types. These includes elimination of comments, 
start of transactions, string content, null parameters, non essential numbers and hexa-
decimal numbers, the last line of code, removing of extra space, new line and tab 
characters and lower-casing. Similar normalization process can be referred in 
pgBadger [1] that is used for batch log file processing. Next is an example of Log-
stash configuration file for normalization of SQL queries using Logstash mutate filter. 
This filter allows performing of regular expression pattern matching and replacement 
for general transformation of event fields. Following is the piece of the Logstash filter 
configuration file for SQL query normalization: 
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mutate { 

 # Set the entire query lowercase 

 lowercase => [ "statement" ] 

 gsub => [ 

  # Remove comments 

  "statement", "\/\/\*(.*?)\*\/", "", 

  # Remove extra space, new line and tab 

  "statement", "[\t\s\r\n]+", " ", 

  # Remove start of transaction 

  "^\s*begin\s*;\s*/,"", 

  # Remove string content 

  "statement" , "\\'", "", 

  "statement" , "'[^']*'", "''", 

  "statement" , "''('')+", "''", 

  # Remove NULL parameters 

  "statement" , "=\s*null", "=''", 

  # Remove numbers 

  "statement" , "([^a-z_\$-])-?([0-9]+)","\ 10", 

  # Remove hexadecimal numbers 

  "statement" , "([^a-z_\$-])0x[0-9a-f]{1,10}", "\10x" 

 ] 

} 

Other useful pre-processing plugging is the merge filter that lets us combine two 
events that occur within a period into a new single event. This can be helpful if infor-
mation for a single SQL query is split into several log events. In our case, Postgres 
logs two events for a single query, first containing the SQL query, and the second 
containing the duration of the query execution. Merge plugin has the following op-
tions that are used: 

 key => Unique identifier, used to match the two events you want to merge. 
 order => 'first' or 'last', the order the events should arrive  
 merge_tag => Tag(s) to add on the new event.  
 period => Max length of time between events(seconds).  

In the example below if the event is the first event to be merged we execute the fol-
lowing merge plugin. This can be controlled using conditional filter processing. The 
merging of events is based on the key values, i.e. in this case "session_id" and "ses-
sion_line_num". 

merge { 

 key => [ "session_id", "session_line_num" ] 

 order => 1 

 period => 1 

} 
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Finally for the second event, if that event contains the durraion of the SQL query, 
and matches the key fields "session_id" and "session_line_num", the event fields 
specified are merged. In this case we merge only the "duration" field. 

merge { 

key => [ "session_id", "session_line_num" ] 

fields_to_merge => [ "duration" ] 

 order => 2 

} 

At the end of pre-processing we remove the log message key-value for personal 
data protection, and further calculate a hash of the normalized SQL statement in order 
to optimize the analysis process so it will not involve the full complex SQL state-
ments. 

mutate { 

 add_field => [ "sql_hash", "%{statement}" ] 

 remove_field => [ "message" ] 

} 

anonymize { 

 algorithm => "MD5" 

 fields => [ "sql_hash" ] 

 key => "<some seed>" 

} 

Analytics filter . In order to perform statistical analysis of the performance of SQL 
queries, we found that the use of the metrics filter [3] can be practical. The metric 
filter produces an aggregation metrics from the log events based on the selected key 
values. The metrics filter is invoked periodically (flush_interval), can filter the proc-
essed events based on a time frame (clear_interval) and can produce statistics of both 
event occurrence (count, rate of events) and event values (ex. sql statement duration). 
The timer parameter of the metrics filter gives us a variety of information as follows: 

 “thing.count” - the total count of events 
 “thing.rate_Xm” - the X-minute rate of events 
 “thing.min” - the minimum value seen for this metric 
 “thing.max” - the maximum value seen for this metric 
 “thing.stddev” - the standard deviation for this metric 
 “thing.mean” - the mean for this metric 
 “thing.pXX” - the XXth percentile for this metric 

Following is the Logstash configuration that uses the metrics filter in order to pro-
duce statistics on every 60 seconds, based on SQL events in the past 300 seconds. The 
statistics contain count, rate_1m and rate_5m for the event occurrence, and duration 
statistics per SQL query type (sql_hash). The statistics are produced as a separate log 
event. 
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metrics {  

 add_tag => "metric" 

 timer => [ "%{sql_hash}", "%{duration}" ] 

 flush_interval => 60 

 clear_interval => 300 

 rates => [1,5] 

} 

Analyze of log files in real time can signalize and detect errors, track CPU usage, 
monitor parameters and similar. If some of parameters rise above expected values, or 
error occurs, built in (in future) triggers will indicate or even prevent possible prob-
lems in real time. Figure 2 shows how these metrics filters present results in Kibana. 

 
0091e3390f763d542da76ea18d56717d.count 832 
0091e3390f763d542da76ea18d56717d.rate_1m 4.50225627 
0091e3390f763d542da76ea18d56717d.rate_5m 4.21929311 
0091e3390f763d542da76ea18d56717d.min 0.008 
0091e3390f763d542da76ea18d56717d.max 0.283 
0091e3390f763d542da76ea18d56717d.mean 0.0620601 
0091e3390f763d542da76ea18d56717d.stddev 0.20703094 
0091e3390f763d542da76ea18d56717d.p1 0.009 
0091e3390f763d542da76ea18d56717d.p5 0.009 
0091e3390f763d542da76ea18d56717d.p10 0.01 
0091e3390f763d542da76ea18d56717d.p90 0.113 
0091e3390f763d542da76ea18d56717d.p95 0.124 
0091e3390f763d542da76ea18d56717d.p99 0.15367 
0091e3390f763d542da76ea18d56717d.p100 0.283 

Fig. 2. Result fields of metrics (meter and timer) event in Kibana 

4 Real time analysis of e-Dnevnik database log file  

To illustrate possibilities of our infrastructure, we have analyzed log files generated 
from e-Dnevnik. e-Dnevnik is the electronic system for managing the student records 
of elementary and high schools in Macedonia. There is a huge number of requests in 
real time and we would like to take some statistics based on the traffic that is gener-
ated in a defined periods of time. The data analyzed are SQL queries saved in log file. 
In the Figure 3 below we present two histograms produced by Kibana. The first chart 
displays the distribution of the number of events in the system, calculated per 30 sec-
onds intervals in the time period from 14:26 untill 15:16, having 2207880 hits all. The 
second chart shows the calculated mean duration of SQL queries execution time for 
the same period and intervals. This shows that the mean of the query duration is 
higher at the specific period of time. The higher mean duration time of SQL queries in 
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this example is the consequence of the Postgres server restart and warming up of 
Postgres shared buffers. 
 

 
Fig. 3. e-Dnevnik number of hits and duration mean per 30 seconds intervals, in selected 14:26-
15:16 period of time 

4.1 Result Visualization 

For now we didn’t implement any specific tool or make our own, beside  Kibana that 
will visualize the statistical data produced by the metric filter. In future work we plan 
to implement such a tool that visualizes result automatically. To visualize and com-
pare results for various time intervals, and multiple parameters obtained by metrics 
filters in single picture, we export results in JSON format and import them in Excel. 
Figure 4, 5 and 6 present results acquired by the metrics filters count, rate_1m, 
rate_5m, min, max, mean, p1 (1 percentile), p5 (5 percentile), etc. Illustration is done 
for the five types of SQL queries. On the Figure 4 the 1 and 5 min rates of each query 
for the consecutive 1 min intervals in 10 min period are shown. Figures may indicate 
that the rates of query types 5 and 3 are slightly higher. Further investigation should 
be done (for their duration) and eventual optimization of these queries can be sug-
gested.  

 
Fig. 4. Comparison of the 1 and 5 min rates for the five types of queries (parameters: rate_1m, 
rate_5m) for the consecutive 1 min intervals in 10 min period. 
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On the Figure 5 below the number of occurrences for the same five types of que-
ries for the consecutive 1-min intervals in 10 min period is shown.. 

 

  
Fig. 5.    Comparison of the number of occur-
rences for the five types of queries (parameter: 
count) for 1 min intervals in 10 min. period. 

Fig. 6. Change of the several statistical pa-
rameters for the one type of query, for 1 min 
intervals in 10 min. period. 

Figure 6 shows the change of the several statistical parameters for one type of 
query in 10 min period. The idea is to monitor these and other parameters in order to 
detect anomalies.   

5 Conclusion 

Analyzing Big Data in real time is a challenging process but the need for this ana-
lytics is emerging with enormous growth of incoming data and need of their fast ana-
lyze. In this paper, we propose infrastructure we have adjusted in order to analyze big 
log files in real time and demonstrate related analytics we made on system “e-
Dnevnik” big log files that are produced daily by its PostgreSQL server.  

The main components of the infrastructure are open source and free software tools, 
Redis, Logstash, Elasticsearch and Kibana. The infrastructure design is based on the 
pipeline event processing, divided in phases: input (collects and manages events and 
logs), buffering, decode/pre-process (extract structured data into variables, parse), 
filter (modify, extract information) and output (ship the data for storage, index, search 
and visualize). Proposed architecture is capable to scale up/out depending on the input 
stream size and rate, by running one or more of its components as separate 
threads/servers. Flexibility is achieved by possibility of adding various further com-
ponents as Hadoop, Cassandra, statistical or graphical tools like Statsd, Graphite, or 
deploying extension of functionalities in each phase by using own plugins.  

We illustrate the SQL queries database transaction logs analytics with implementa-
tion of the filters that produce various statistics enabling detections of anomalies in 
query performance on an operational level. This means that we are able to detect per-
formance degradation of SQL queries in real time and alert adequately in order to 
remove the possible causes. In the same time in real time we do the pre-processing of 
the logs in order to reduce the amount of content of SQL queries that are necessary to 
be saved for further analyze. 

In the future work we plan to extend the usage of available Logstash filters and in-
clude our own. The main goal will be to build-in triggers or similar mechanism that 
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will automatically act in case of detected problems. We plan to extend the pre-
processing of the incoming logs by parameterization of the SQL queries to lower 
further the volume of the stored data and to enable easier future analyses. Depending 
on the input stream of data we will experiment with scale up/out of the system com-
ponents/servers and including other (batch appropriate) components as Hadoop and 
visualization tools. 
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