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Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function.
The coupling strength and directionality are relatively well understood and studied, at least for two interacting
systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions.
Such a special case is studied here: synchronization transition occurs only due to the time variability of the
coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the
investigation, an example is used to present an analysis of cross-frequency coupling functions between delta
and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a
free-running resting state. The results indicate that time-varying coupling functions are a reality for biological
interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused
by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is
discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling
functions. The form of the coupling function acts as an additional dimension for the interactions, and it should

be taken into account when detecting biological or other interactions from data.
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I. INTRODUCTION

Interacting dynamical systems abound in nature, with
examples ranging from physics, biology, and climate and
social sciences [1-3]. Many of them are open systems and
have connections with other systems and the environment. The
connectivity presents a link between two dynamical systems,
which can be structural, functional, or effective [4]. Very often
these interactions are assessed successfully to a relatively great
extent when they are considered isolated; however, in some
cases there is additional complexity due to external influences
and the existing time variability. From the aspect of mathemat-
ical models, such systems and their interactions are studied as
nonautonomous dynamical systems [5—9]. The time variability
can have different effects on the interactions, including, for
example, changes in frequency, emergence or disappearance
of connectivity, transitions into or out of qualitative states, or
time-varying form of the coupling functions.

A coupling function describes in great detail the physical
rule of how the interactions occur and manifest. For example,
the reconstructed coupling function of Belousov-Zhabotinsky
chemical interactions revealed how there could be higher
harmonics and bistability of the synchronization state [ 10]; the
knowledge of the coupling function of one pairwise interaction
was used to predict the synchronization and clustering of a
network of electrochemical oscillators [11], and the form of the
cardiorespiratory coupling function was linked to respiratory
sinus arrythmia, a known mechanism in physiology [12,13].
The coupling function as a whole can be described in terms
of its strength and form. It is the functional form that has
provided a new dimension and perspective, probing directly
the functional mechanisms of the interactions. In this way the
coupling function can determine the possibility of qualitative
transitions between states of the systems, e.g., routes into and
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out of synchronization. Decomposition of a coupling function
can also facilitate a description of the functional contributions
from each separate subsystem within the coupling relationship.
Different methods for coupling function detection have been
applied widely in chemistry [10,11,14—16], cardiorespiratory
physiology [12,13,17], neuroscience [18-20], mechanical
interactions [21], social sciences [22], and secure commu-
nications [23]. The study of coupling function is a very active
and expanding field of research [24].

Recently it was found that in interacting biological os-
cillating systems, not only the frequency and the coupling
strength but also the form of the coupling functions can be a
time-varying process [17]. This was demonstrated in the case
of cardiorespiratory interactions and showed that not only the
net parametric and quantitative properties but also the mech-
anisms of the interactions can be time-varying. These varying
coupling functions can change in time the physical rules
for the interactions, which can cause transitions of physical
effects and phenomena, as the most important outcome of the
interactions. For example, the time-varying cardiorespiratory
coupling function was shown to induce transitions in and out of
synchronization and between different synchronization ratios
[17]. Therefore, understanding the effects of the time-varying
coupling functions on the interactions is of great interest,
especially in understanding, detecting, and interpreting the
interactions of open (biological) systems. In this paper, we
further investigate the effects of the time-varying coupling
functions on the interactions, which can be revealed uniquely
by the coupling function analysis.

The time-varying coupling functions are especially impor-
tant for the detection and inference of interactions from data.
Namely, they can be represented by a series of subcoupling
components, and their time variability can introduce a certain
complexity in the interactions. Being able to detect and
correctly interpret the coupling will depend greatly on the
nature of the methods used. For example, some methods
assess the amount of information, net coupling strength,
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and directionality, while other methods perform dynamical
inference of a model with differential equations and can
describe the underlying mechanisms and coupling functions.
Hence, one of the main aspects of the paper will be to discuss
a method for analysis of the interactions, in light of the
complexity introduced by the time-varying coupling functions.

II. BIOLOGICAL INTERACTIONS AS MOTIVATION: THE
CASE OF NEURAL COUPLING FUNCTIONS

Biological systems are of great importance in this field as
they are a classical example of systems that are not isolated
but interact with other systems in the body and can be
affected by other forces in the local environment. Therefore,
the correct analysis of such systems has great implications for
the determination and treatment of various physiological states
and diseases.

The electrophysiology of the brain evaluated through
electroencephalography (EEG) presents an important charac-
teristic for investigating different neural states and diseases;
however, there could be a certain complexity due to time-
varying coupling functions when one tries to analyze the neural
interactions associated with this electrophysiology. Here we
present the neural cross-frequency coupling functions [18] as
an example of biological systems whose coupling functions
are time varying. For this purpose, the EEG signal of a
human subject in a resting state from the public PhysioNet
database is used [25-27]. The EEG signals were recorded with
64 electrodes according to the standard international 10-10
system. Only one EEG signal recorded at the frontal Fpl
electrode of the 10-10 system, recorded during the eyes-closed
resting state of a healthy subject, was analyzed here. After
extracting the phases for the delta and alpha brain-wave
oscillations of the filtered delta and alpha brain-wave signals
from the EEG signal, the neural cross-frequency coupling
functions and the coupling strength of two components are
reconstructed by dynamical Bayesian inference (for details
about the method see Sec. IV A). The two subcoupling
components were chosen arbitrarily for better presentation and
in accordance with the other numerical examples that follow.

The delta-to-alpha neural cross-frequency coupling has
been found to be generally higher in the eyes-closed than in
the eyes-open condition of the resting state, mostly located
within the frontal (e.g., at Fpl) and the parieto-occipital
regions, and these regions were connected through larger-scale
coupling with a different coupling direction [28]; the delta-
alpha coupling was significantly increased with more similar
forms of the coupling functions from awake to deep general
anaesthesia, and this effect was higher for anaesthesia induced
with sevoflurane than with the propofol anaesthetic [19]; and
a strong link between delta and alpha brain activity was found
during non-REM sleep, although alpha waves were greatly
diminished and delta waves were dominant [29]. Figure 1(a)
shows that two of the delta-alpha subcoupling components
have significant time variability between the allowed [—1,1]
values. This leads to the time variability of the form of the
coupling functions, as can be seen by comparing the three
delta-alpha coupling functions in Fig. 1(b). The fact that the
subcoupling components are time-varying, causing the form
of the coupling functions to vary as well, points to the possi-
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FIG. 1. An example of time-varying delta-to-alpha neural cross-
frequency coupling functions. (a) The time variability of two coupling
subcomponent strengths, ¢;(¢) and c¢,(¢). The latter are scaling param-
eters of the sin(¢s — ¢,) and cos(¢s — ¢,) subcoupling components
in the phase dynamics of the delta-to-alpha interactions. (b) Three
delta-to-alpha coupling functions g, (¢s,¢,) for three specific time
instances as indicated by the gray arrows. Note the variability of the
form of the coupling functions for the different time instances.

bility of qualitative transitions of the interactions. Therefore,
revealing this complexity can be of crucial importance for the
correct analysis and interpretation of the neural interactions.

III. THE CHARACTERISTIC PROBLEM OF
TIME-VARYING COUPLING FUNCTIONS:
DIRECT APPROACH

The subcoupling components define the form of the net
function, i.e., the coupling function is evaluated as a group sum
of all the functional components of some set of decomposition
functions. For example, for the phase dynamics of interacting
oscillators, because of the periodicity, one can decompose
the coupling functions into Fourier series. Therefore, the
variations of some of the subcoupling components will also
define how the form of a net coupling function will vary. The
latter effect may or may not change the coupling strength, to
a greater or lesser extent; however, it will change the form of
the coupling function and thus the mechanism underlying the
interactions, which in turn can cause qualitative transitions.
The mechanism is defined by the function that gives the rule
through which the input values are translated into output values
[4,30].

To further explain and emphasize the complexity and the
effects from the varying subcoupling components, a simple
numerical example is used. A system of two interacting phase
oscillators [31,32] is considered:

¢ = o1 +&1()q1(P1.¢2)

= wi + ¢1(7) sin(¢p — ¢1) + c2(t) cos(pa — ¢1),
$2 = w2 + e2(1)q2(1.¢)

= w; + c3(7) sin(¢1 — ¢2),

ey
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FIG. 2. Time-varying coupling functions lead to synchronization transition, during constant net coupling strength. (a) The time variability
of the subcoupling components ¢;(¢) and ¢,(¢) and the constant net coupling strength & (¢). Coupling functions at the beginning (b) and end (c)
of the observation time. Note the different form, comparing (b) and (c). Synchronization transition (d) shown with the phase difference ¥ (¢)

(axis right) and the synchronization index Igc(f) (axis left).

where w;, w, are the natural frequencies, while cy, ¢, ¢3 are
the strengths of the subcoupling components that scale the
appropriate coupling function components. The numerical
values of the parameters were set to w; = 2.28, wp, = 1.2
and c3(¢) = 0.1. Here, and throughout the paper, the focus
is on the coupling in only one direction—the coupling from
the second to the first phase oscillator. In this coupling
direction the strengths of the subcoupling components c;(¢)
and c,(t) are set to be time-varying, i.e., ¢;(t) = /t/T and
c(t) = /(T —t)/ T, where the time changes t = 0 — T and
T is the total time of observation. In this way c;(¢) varies in the
interval [0, 1], and ¢,(¢) varies in the interval [1,0]. The total net
coupling strength, or the net information flow in one coupling
direction, is evaluated as the Euclidian norm of all the coupling
components [21], which in this case is & (t) = Vc3(t) + ¢3(1).

The main purpose of the example is to present constant
net coupling strength, but time-varying coupling functions.
To do this ci(¢) and c,(¢) were varied in the interval [0,1]
simultaneously, but reducing one and increasing the other,
in such a way as to give constant net coupling ¢;(¢) for all
time. Figure 2(a) shows the time variation of the coupling
parameters, with c;(¢) and c,(¢) varying, while ¢;(¢) is being
constant. The important part is that even though the net
coupling is constant, the coupling function also varies due
to the variations of the subcoupling components. The latter
can be observed by comparing the different forms of the
coupling functions at the beginning Fig. 2(b) and the end of
the observation time Fig. 2(c).

The variation of the coupling function changes the mech-
anism and the physical rule under which the interactions are
manifesting, which can lead to qualitative transitions into or
out of certain physical effects and phenomena of the interac-

tions. The latter could include transitions to synchronization,
amplitude or oscillator death, clustering in networks, or the
emergence of chimera states. With the current example we
present the transition to synchronization. Figure 2(d) (axis
right) shows that the phase difference of the interacting system
(1) is not bounded at the beginning, and then at approximately
t ~ 2500 s there is a transition to bounded phase difference, as
in the case of synchronized systems. The same can be verified
by the synchronization detection index [33], which quantifies,
in the interval [0, 1], the synchronization (or phase coherence)
from the phase difference. The method first divides each phase
interval into N bins (N = 10 used here, and window size 50 s).
Then, for each bin /, it calculates the dependence of ¢»(¢;) on
¢1(t;), such that ¢;(¢;) belongs to this bin /, and M, is the
number of points in the bin. The average over all bins leads to
the final index: Lync(t;) = 1/N SN IME Y € 40) In this
way, Iyyne measures the conditional probability for ¢, to have
a certain value provided ¢, is in a particular bin. If the values
are greater than ~0.95 [surrogate level resulting from the
mean plus two standard deviations of synchronization indexes
from phase random shuffling realizations [34,35], shown
with dashed lines in Fig. 2(d)], synchronization is detected.
Figure 2(d) (axis left) shows consistently that at approximately
t ~ 2500 s there is a transition to synchronization. Therefore,
although the net coupling strength was constant between the
systems, due to the change of the coupling functions there is a
transition to synchronization.

IV. INTERACTION ANALYSIS: INVERSE APPROACH

The main objective here is to be able to detect or infer
from data the coupling relations between the systems. This
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constitutes the so-called inverse approach, starting from the
data and attempting to learn the nature of the connectivity be-
tween dynamical systems. The methods for coupling inference
have great importance as they allow different applications in
various fields.

Many efficient methods for coupling detection have been
designed [11,15,17,21,36-42], and they are based around two
main aspects. The first aspect is that the assessment of the
strength of the interaction and its predominant direction can
be used to establish if certain interactions exist at all. In this
way, one can determine whether some apparent interactions
are in fact genuine, and whether the systems under study are
really connected or not. The second aspect is that one can infer
the underlying interacting systems, including the appropriate
coupling functions, and learn about 2ow an interaction occurs.
The former aspect determines the existence of coupling and
relates to functional connectivity, while the latter describes the
mechanisms and is part of the effective connectivity methods
[4]. Below, an effective connectivity method which infers
coupling functions inherently is presented in light of the
interaction complexity, as discussed in the previous sections.

Dynamical Bayesian inference

Dynamical inference of coupling functions is a class of
effective connectivity methods for coupling assessment. The
main pillar of the procedure is a method for dynamical
inference, often referred to as dynamical modeling or dynam-
ical filtering [35,43—46]. The dynamical inference procedure
starts with the data from two (or more) interacting dynamical
systems and uses a method that infers a dynamical model in
terms of (ordinary or stochastic) differential equations. The
coupling functions are an integral part of, and can be extracted
from, the inferred model.

There are a number of other methods for dynamical
inference and coupling functions assessment, including those
based on least squares and kernel smoothing fits [13,47],
dynamical Bayesian inference [17], maximum likelihood
(multiple-shooting) methods [15], stochastic modeling [48],
and the phase resetting curve [49]. Below, the dynamical
Bayesian inference [17] will be presented and applied.

The signals under consideration are oscillatory and their
interactions can be studied effectively through their phase
dynamics. Therefore, a model of two coupled phase oscillators
[31] described by the stochastic differential equation is
considered:

b = wi + qi( i ¢)) + & (D), 2

with i # j for i,j = {1,2} and where w; is the parameter
for the natural frequency. The deterministic part given by the
base functions g;(¢;,¢;) describes the self- and the interacting
dynamics. The external stochastic dynamics &;(¢) is considered
to be Gaussian white noise (§;(¢)§;(t)) = 6(t — t)D;;. Due to
the periodic nature of the deterministic dynamics, the base
functions can be decomposed into an infinite Fourier series
Gi( i) =Y o0 D0 Eis €27 P29 In practice,
however, the dynamics are well described by a finite num-
ber of Fourier terms, so that one can rewrite the phase
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dynamics as

K

b= D G0 Pilging)) + &),
k=—K

where E(()’ ) — w;, and the rest of ®; ; and E,(:) are the K most
important Fourier components; here we used K = 2. It is
important to note that the net coupling function g;(¢;,¢;)
is decomposed into a series of subcoupling components
®; 1 (¢;,¢;), which in turn allows for the particular complexity
of the interactions to be revealed. In this way, a coupling
influence is separated on a large but finite set of subfunc-
tional elements, making it possible to study the coupling
contributions of each of them separately or in subgroups. The
assessment of the separate components defines the form of
the net coupling function. The Fourier components ®; ; act as
base functions for the dynamical Bayesian inference, through
which the parameters E,(f) are evaluated.

Dynamical Bayesian inference [17,18,50] enables one to
evaluate the model parameters €, which give the time-evolving
coupling functions and coupling strength in the presence of
noise. From Bayes’s theorem one can derive the minus log-
likelihood function, which is of quadratic form. Assuming
that the parameters are represented as a multivariate normal
distribution (with mean &, and covariance matrix = = E7'),
and given such a distribution for the prior knowledge using
the likelihood function, one can calculate recursively [17,50]
the posterior distribution of the parameters ¢; using only the
following four equations:

ho. .
D= z[¢n — P )] [hn — & Pul(@”)],

fu = o €+ 0107 D7), — 5 2200,
Erw = Epriohkw + h Pr(@F,) D) Dy (97,
& = (B Dy Tus 3
where summation over n = 1, ...,N is assumed, and sum-

mation over repeated indices £ and w is implicit. We used
informative priors and a special procedure for the propagation
of information between consecutive data windows [17], which
permitted the inference parameters that varied with time (for
implementation and usage see Ref. [51]). Once we have the
inferred parameters ¢, we can calculate the coupling quantities
and characteristics. The coupling functions are evaluated on a
2m x 27 grid using the relevant base functions, i.e., Fourier
components scaled by their inferred coupling parameters. The
method has been also generalized and applied to networks of
oscillators [18,52].

The method is applied on data generated from the model
of two interacting phase oscillators [Eq. (1)], with the same
time variability of the coupling subcomponents c;(z), c»(¢) and
constant total net coupling &(¢) [Fig. 3(a)] and the frequency
parameters setto w; = 9 and w, = 1.2 to ensure that there is no
synchronization between the systems. The latter is important:
if there is strong phase synchronization, the coupling method
will not be able to correctly infer the couplings [47]. The
inference of the model parameters is very precise, and
the inferred time-varying coupling subcomponents and the
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FIG. 3. The use of the dynamical Bayesian inference for coupling detection under the time-varying coupling functions condition. (a)
The time variability of the coupling components c¢;(¢), c,(¢) and the constant total coupling &(¢) from system equation (1). Here the inferred
parameters are shown as thick transparent lines above the simulated parameters shown with thin darker lines. (b) The detected coupling
functions ¢ (¢ ,¢>) shown for four characteristic times as indicated by the arrows.

net coupling strength are practically indistinguishable from
the original simulated parameters; see Fig. 3(a). Thus, the
dynamical inference provides the information of the whole
model and the variations of the subfunction components.
The latter define the form of the net coupling function, hence
the method is able to follow its time evolution as well; compare
the coupling functions from left to right in Fig. 3(b). As
discussed, even though the coupling strength is constant these
varying coupling functions can cause qualitative transitions in
the interactions.

V. DISCUSSION AND CONCLUSION

Much effort has been concentrated in the study of coupling
functions with significant progress on theory, methods, and
application. However, many open questions relevant to the
coupling functions still exist. One particular aspect is their
assessment, or what can be done once the coupling functions
have been determined. The effect of time-varying coupling
functions relates and further extends this aspect.

The time variability of the subcoupling components and the
coupling functions are quite pronounced in biological systems.
This was first observed in cardiorespiratory interactions and
demonstrated here with the neural coupling functions of the
human resting state (Fig. 1). It is important to note that the
variability of the biological coupling functions can depend on
the physiological state or disease. For example, it was observed
that the cardiorespiratory coupling functions are less varying
in young compared to old human subjects [12,13]. Similarly,
it was found that general anaesthesia reduces the variability of
the delta-alpha neural coupling functions [19]. The complexity
arising from the varying coupling functions and their analysis
is thus of great importance for the assessment of different
medical states and diseases.

The theoretical case presented shows the relevance of the
time-varying coupling functions in a special situation when the
net coupling is invariant and the transition to synchronization

is due only to the variations of the form of the coupling
functions (Fig. 2). The treatment of the same phenomenon
with the nonautonomous theory is an interesting open question
for future developments. The particular example (Eq. 1)
was chosen to be simple and elementary, as it elaborates
rather complicated concepts; however, the same phenomenon
can be investigated also with more complex systems, like
limit-cycle oscillators or higher-dimension chaotic systems.
Importantly, the phenomenon could have even more complex
implications for networks [53] and various methods for
networks inference [54-58]. Also, the variability is quite
simple—only in two subcoupling components. In real systems,
the variations may be less pronounced but spread across
more subcoupling components. Needless to say, the situation
of having exactly constant coupling strength while having
large coupling function variations is quite a special case. In
reality it is expected that the form variations are only partially
contributing to the change of the interactions. The coupling
strength and the coupling function are strongly related and
to some extent dependent, but as shown here they can also
affect the outcome of the interactions independently. This is
because the form of the coupling function acts as an additional
dimension in the assessment of the interactions.

The information theoretic-based methods assess the statis-
tical dependencies between the signals from the interacting
systems. The most prominent methods of this kind are based
on Granger causality, transfer entropy, mutual information, and
symbolic transfer entropy [30,38,59-61]. They are statistical
measures that can determine the causal relation and the
predominant direction of influence, thus measuring a directed
functional connectivity. In this way, they usually reveal only
the net coupling and direction; thus they are not able to detect
the varying subcoupling components, because these methods
are designed to perform in such a way, i.e., designed to infer
only the net statistical effects [30]. In fact, they are very
useful methods for identification of directed connectivity and
interaction existence, especially in the case where a model
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of differential equations for the dynamical inference cannot
be reconstructed. The presentation in this paper points to the
importance of the phenomenon of time-varying subcoupling
components, and hopefully it will stimulate further develop-
ments of some aspects of these methods. Here, it is worth
noting that there have recently been efforts to use information-
based methods to perform coupling decomposition [62,63]
by exploiting the conditional functional dependencies. These
methods could advance the detection of certain subcoupling
relations, without exploiting a dynamical model.

The dynamical inference methods are by design able to
infer a dynamical model including the coupling functions. This
was demonstrated by the use of dynamical Bayesian inference
which was able to reveal the subcoupling function’s time
variability (Fig. 3). The design and application of dynamical

PHYSICAL REVIEW E 95, 022206 (2017)

inference methods is rapidly evolving, promising to reveal even
more interacting complexities, unique and dependent on the
coupling functions. The latter is even more pressing, because
as shown the varying coupling functions are a reality for
biological systems, and they could have important implications
for the interactions in general.
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