CRYMCALC - A COMPUTER PROGRAM FOR CRYSTAL MORPHOLOGY CALCULATIONS

Vladimir M. Petruševski ${ }^{1}$, Vladimir G. Ivanovski ${ }^{1}$ and Kostadin G. Trenčevski ${ }^{2}$
${ }^{1}$ Institute of Chemistry, Faculty of Natural Sciences and Mathematics, The "Sv. Kiril \& Metodij" University, POB 162, 91001 Skopje, Republic of Macedonia
${ }^{2}$ Institute of Mathematics, Faculty of Natural Sciences and Mathematics, The "Sv. Kiril \& Metodij" University, POB 162, 91001 Skopje, Republic of Macedonia

Abstract

Correct indexing of single-crystal faces is vital in many areas of spectroscopy, crystallography and solid state physics and chemistry in general. Precise measurements of the angles between the crystal faces, combined by knowledge of the unit-cell parameters, allow positive identification of the types of faces. An equation for calculation of the angle between two planes, defined by their Müller indices, was derived for the most general case (oblique coordinate system). A computer program (CRYMCALC) written in Qbasic is used to calculate the theoretical values of the angles between different pairs of crystal planes which are then compared to the measured values. The value which is closest to the measured one reveals the pairs of planes in question.

Key words: crystal face indexing; Müller indices; crystal planes; calculation of angles

INTRODUCTION

Single-crystal spectroscopy (Raman, IR, UVVIS etc.) has become an important tool for material research in the last few decades [1-3]. The interest in the application of these methods increases since much information obtainable in this way remains obscured when polycrystalline samples are studied. Single crystals of both natural and synthetic origin may easily be studied [4-5].

The first step, after the sample has been selected, is a proper alignment of the crystal with respect to the laboratory coordinate system. This orientation implies knowledge of the crystal morphology; that is, the crystal faces have to be correctly indexed. This task is not as trivial as it may look. A systematic method for face indexing is, therefore, desirable. The purpose of the present paper is to point to a possible solution to problems of this kind.

DEFINITION OF THE PROBLEM

Single crystal faces correspond to certain crystal planes. The easiest way to describe these planes is in terms of their Müller indices. Only the simplest representatives of the form ($\pm h, \pm k, \pm l$) are important, since all other planes of the form ($\mathrm{n} h, \mathrm{n} k$, $\mathrm{n} l$) where n is an integer are parallel with them. In
special cases (typically in crystals of high symmetry, or crystals with developed pinacoidal faces only), one may reveal the crystal morphology by simple inspection. Ordinarily, however, this is not possible. In such cases, perhaps the easiest approach for the correct indexing of crystal faces is the measurement
of the angle between a pair of faces sharing a common edge. This could be done by means of a goniometer or some other instrument of comparable precision. Providing the unit cell parameters are known, one could calculate the (theoretical) value of the angle between any two crystal planes. Then, by simple comparison of the calculated values with the measured one (allowing for the error of the goniometer/instrument), one may deduce the pair of planes in question. In this way three measurements of angles (typically angles built by three planes having a common vertex), will result in unambiguous face indexing.

In principle, one might use various available computer programs/packages to accomplish this
task. There is a program CRYSCALC written by one of the authors some time ago [6], that can be used to complete the job. This program, however, was designed for routine calculations in crystallography, where the user defines a plane by a set of three atoms (i.e. the input data are the unit-cell parameters and the fractional coordinates of the atoms in question). For the present work, where systematic calculations of a number of angles are necessary, it is totally impractical. The program CRYMCALC that we present here may be considered as an attractive and time-saving alternative. A few comments on its structure and use will follow.

THE COMPUTER PROGRAM

The question of principal importance is: How can the angle between two crystal faces/planes be calculated? As mentioned, the easiest way to define a crystal face/plane is by means of its Müller indices. This implies the use of a modified segment form of an equation of plane. Note that the problem is not trivial, because in a general case the coordinate system may not be rectangular. The results of the solution to the problem are given in Appendix 1. As can be seen, the angle depends only on the unit cell parameters and the Müller indices of the two intersecting planes. This is of crucial significance to the problem, since the indices may be easily varied in a systematic way (using loops).

The computer program is given in Appendix 2, hence only a brief description will follow. The program is composed of several parts. The first part of the program (VariablesInUse) declares all variables that are to be used. The next part (Intro) gives the user all necessary information. UnitCellParameters is the third part, where a, b, c, α, β and γ are entered. Indices is a very important part, where the user picks lower and upper limits for the Müller indices of the two sets of planes. Integers from -4 to 4 are the legal input. It is highly recommended not to use the entire range (-4 to 4) for all indices of the two sets of planes, for this will eventually result in an overlong calculation. MainProgram is the central part of the program. It consists of six nested loops (two triplets of h, k, l indices) within which a subroutine for angle calculation is called. In this way, all relevant pairs of planes are taken into account. A little trick is used to skip unnecessary calculations
for sets of planes that are parallel to what we call the simplest representatives. The sums of cubes: $|h|^{3}$ $+|k|^{3}+|l|^{3}$ are calculated for both planes. Whenever any of these is equal to $8,16,24,27,54,64,72,80$, $81,128,136$ or 192 , the calculation is avoided. The value of 8 corresponds to a (200), (020) or (002) plane (or their symmetry equivalents) and these are, of course, parallel to the already included (100), (010), and (001) planes. The other numbers are explained similarly. The reason for using sum of cubes rather than squares is that the sum of squares is not unique. For example, both (330) and (411) planes have the same sum of squares - 18, but only the first one is to be avoided. Evidently, the sum of squares gives no criterion of redundancy. On the other hand, the sums of cubes for these two planes are 54 and 66 , respectively.

Throughout the whole program most input errors are intercepted (the user being returned to the same data entry). The output results may (optionally) be saved to a disk sequential file under the name 'ANGLES.CMC'. Lots of comments are used in the program, to facilitate understanding its structure and the function of various parts (cf. Appendix 2).

Acknowledgement: The authors wish to express their sincere thanks to one of the referees who pointed out to a more compact and faster subroutine for the angle calculation. Although the gain in speed is tiny (and is limited mainly by the relatively slow print-to-disk routine, during sequential file write operation), the suggestion was adopted since it is the correct approach from the programmers point of view.

REFERENCES

[1] P. M. A. Sherwood, Vibrational Spectroscopy of Solids, Cambridge University Press, Cambridge, 1972.
[2] D. A. Long, Raman Spectroscopy, McGraw-Hill, New York-London, 1977.
[3] J. C. Decius, R. M. Hexter, Molecular Vibrations in Crystals, McGraw-Hill, New York, 1977.
[4] H. Takahashi, I. Maehara, N. Kaneko, Spectrochim. Acta, 39A, 449 (1983).
[5] A. Goypiron, J. de Villepin, A. Novak, J. Raman Spectrosc. 9, 297 (1980).
[6] V. M. Petruševski, CRYSCALC - a computer program for various calculations in crystallography, Institute of Chemistry, Faculty of Science, Skopje, 1990 (unpublished).
[7] K. Trenčevski, unpublished work.

APPENDIX 1

The crystal in question may belong to any of the six crystal systems. Let us consider an oblique coordinate system, as shown in Fig. 1. The equations of the two planes may be written as:

Fig. 1. The oblique coordinate system in use

$$
\begin{aligned}
& \Sigma_{1}: h_{1} x+k_{1} y+l_{1} z=1 \\
& \Sigma_{2}: h_{2} x+k_{2} y+l_{2} z=1
\end{aligned}
$$

where $h_{\mathrm{i}}, k_{\mathrm{i}}$ and l_{i} are the Müller indices of the planes. After some lengthy manipulations, one arrives [7] at the following formula for calculation of the angle between the planes:

$$
\phi=\arccos \left(\frac{A}{\sqrt{B C}}\right)
$$

where ϕ is the angle, and the quantities A, B, C are defined below:

$$
\begin{aligned}
& A= a^{2} b^{2} l_{1} l_{2} \sin ^{2} \gamma+b^{2} c^{2} h_{1} h_{2} \sin ^{2} \alpha+c^{2} a^{2} k_{1} k_{2} \sin ^{2} \beta+a b^{2} c\left(l_{1} h_{2}+l_{2} h_{1}\right)(\cos \gamma \cos \alpha-\cos \beta)+ \\
&+b c^{2} a\left(k_{1} h_{2}+k_{2} h_{1}\right)(\cos \alpha \cos \beta-\cos \gamma)+c a^{2} b\left(k_{1} l_{2}+k_{2} l_{1}\right)(\cos \beta \cos \gamma-\cos \alpha) \\
& B= a^{2} b^{2} l_{1}^{2} \sin ^{2} \gamma+b^{2} c^{2} h_{1}^{2} \sin ^{2} \alpha+c^{2} a^{2} k_{1}^{2} \sin ^{2} \beta+2 a b^{2} c h_{1} l_{1}(\cos \gamma \cos \alpha-\cos \beta)+ \\
&+2 b c^{2} a k_{1} h_{1}(\cos \alpha \cos \beta-\cos \gamma)+2 c a^{2} b l_{1} k_{1}(\cos \beta \cos \gamma-\cos \alpha) \\
& C= a^{2} b^{2} l_{2}^{2} \sin ^{2} \gamma+b^{2} c^{2} h_{2}^{2} \sin ^{2} \alpha+c^{2} a^{2} k_{2}^{2} \sin ^{2} \beta+2 a b^{2} c h_{2} l_{2}(\cos \gamma \cos \alpha-\cos \beta)+ \\
&+2 b c^{2} a k_{2} h_{2}(\cos \alpha \cos \beta-\cos \gamma)+2 c a^{2} b l_{2} k_{2}(\cos \beta \cos \gamma-\cos \alpha)
\end{aligned}
$$

APPENDIX 2

LISTING OF THE COMPUTER PROGRAM

$\begin{aligned} & \text { REM ** } \\ & \text { REM } \end{aligned}$	
REM *	CRYMCALC - CRYSTAL MORPHOLOGY CALCULATIONS
REM *	
REM *REM	
REM *	Vladimir M. Petrusevski \& Vladimir G. Ivanovski
REM *	Department of Physical Chemistry,
REM *	Institute of Chemistry, Faculty of Science,
REM *	Arhimedova 5, 91000 Skopje, Macedonia
REM *	
REM *	Version 2.1 for IBM-PC and compatible computers
REM *	- Written in Microsoft QuickBasic -
REM *	

VariablesInUse: ' Explain what each variable means

$\mathrm{a}=0$	
$\mathrm{~b}=0$	' Unit-cell parameters (axes)
$\mathrm{c}=0$	

alpha $=0$
betta $=0$
gamma $=0$
$\mathrm{ca}=0: \mathrm{cb}=0: \mathrm{cg}=0$
$\mathrm{sa}=0: \mathrm{sb}=0: s \mathrm{~g}=0$
$a \mathrm{abb}=0: \mathrm{bbcc}=0: c c a \mathrm{a}=0$
$a b b c=0: b c c a=0: c a a b=0$
sasa $=0: ~ s b s b=0: ~ s g s g=0$
cgab $=0: c a b g=0: c b g a=0$
$\mathrm{Aa}=0: \mathrm{Bb}=0: \mathrm{Cc}=0$
Counter $=0$
cosfi $=0$
$\mathrm{fi}=0$
$\mathrm{Fl}=0$
' Unit-cell parameters (angles:
' entered in degrees, converted
' into radians)
' Cosines of angles α, β and γ
${ }^{\prime}$ Sines of angles α, β and γ
' Products: aabb $=a^{*} a^{*} b^{*} b$ etc.
' Products: $\mathrm{abbc}=\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{~b}^{*} \mathrm{c}$ etc.
' Products: sasa $=$ sa*sa etc.
' Products: cgab $=\mathrm{cg}^{*} \mathrm{ca}-\mathrm{cb}$ etc.
' Variables to calculate cosfi
' Number of angles calculated
' Cosine of angle between planes,
${ }^{\prime}$ defined as cosfi $=\mathrm{Aa} / \mathrm{SQR}\left(\mathrm{Bb}^{*} \mathrm{Cc}\right)$
' Angle between the planes
' Output flag: 1- screen, 2- disk

$\mathrm{hl}=0$	
$\mathrm{kl}=0$	' Müller indices of first plane
$11=0$	
$\mathrm{h} 2=0$	
$\mathrm{k} 2=0$	' Müller indices of second plane
$12=0$	
Limit $=0$	' Index limit (between 1 and 4)
Hl min $=0$	' Minimum value for h1-index
K 1 min $=0$	' Minimum value for kl -index
Llmin $=0$	' Minimum value for 11 -index
Himax $=0$	' Maximum value for hl-index
K1max $=0$	' Maximum value for kl -index
L1max $=0$	' Maximum value for 11-index
$\mathrm{H} 2 \mathrm{~min}=0$	' Minimum value for h2-index
$\mathrm{K} 2 \mathrm{~min}=0$	' Minimum value for k 2 -index
L 2 min $=0$	' Minimum value for 12 -index
$\mathrm{H} 2 \mathrm{max}=0$	' Maximum value for h2-index
K 2 max $=0$	' Maximum value for k 2 -index
L2max $=0$	' Maximum value for 12-index
$\mathrm{Pi}=4$ * ATN(1)	' Ludolf's number - π
Scl $=0: \mathrm{Sc} 2=0$	'Sum of cubes of Müller indices
Answer \$ = " $"$	' In WHILE \cdots WEND structures: Y/N
Flag $\$=$ " $"$	' Output flag: Y -screen; N -disk
Format\$ = " $"$	' Format of output for PRINT USING
Limit\$ = " $"$	' String-value of variable Limit
Sp\$ = ""	' In WHILE \cdots WEND structures: wait ' for SPACE, Q or R to be pressed

Intro: ' User information

CLS
PRINT
PRINT" CRYstal Morphology CALCulations"
PRINT : PRINT
PRINT " The program calculates automatically the angle between"
PRINT " two planes, given by their Müller indices. No calculations are"
PRINT " done for parallel planes except for the simplest representati-"
PRINT " ve. That is (100), (010), (001), (110), (101) etc. are included"
PRINT " but (n00), (0n0), (00n), (nn0), (n0n) etc. are not. The result"
PRINT " is printed on the screen."
PRINT " The input data are the unit cell parameters (a,b,c may"
PRINT " be entered in arbitrary units, angles are entered in degrees ${ }^{\circ}$;"
PRINT " the inequalities $\alpha<\beta+\gamma ; \beta<\gamma+\alpha ; \gamma<\alpha+\beta$ must all hold)"
PRINT " and the limiting values of the Müller indices (accounting for"
PRINT " the planes to be included in the calculation)."
PRINT " The results may be optionally saved to disk, under the"

PRINT " name 'ANGLES.CMC', in the current directory. Rename this file"
PRINT " (if you want to keep it) immediately after output is redirected"
PRINT " to disk, for it may be invariably lost."
GOSUB ContinueOrQuit

UnitCellParameters: 'Enter a, b, c, α, β, γ

CLS
PRINT : PRINT
PRINT " Enter unit-cell parameters:"
PRINT: PRINT
INPUT " $\mathrm{a} / \mathrm{au}=$ = $;$ a
INPUT " b/au = "; b
INPUT " c/au = "; c
PRINT

INPUT " $\alpha{ }^{\rho}=$ "; alpha
INPUT " $\beta /^{\circ}=$ "; betta
INPUT " $\gamma{ }^{\circ}=$ = "; gamma
' Interception of errors
IF alpha $>=$ betta + gamma THEN GOTO UnitCellParameters
IF betta $>=$ gamma + alpha THEN GOTO UnitCellParameters
IF gamma $>=$ alpha + betta THEN GOTO UnitCellParameters
IF alpha + betta + gamma $>=360$ THEN GOTO UnitCellParameters
' Conversion: degrees to radians
alpha $=$ alpha $* \operatorname{Pi} / 180$
betta $=$ betta * Pi / 180
gamma $=$ gamma $* \operatorname{Pi} / 180$
GOSUB Correct ' Check input data for errors
IF Answer\$ = "N" THEN GOTO UnitCellParameters
' Products of unit-cell parameters
aabb $=a^{*} a^{*} b^{*} b: b b c c=b^{*} b^{*} c * c: c c a a=c^{*} c^{*} a^{*} \mathrm{a}$
$\mathrm{abbc}=\mathrm{a}^{*} \mathrm{~b} * \mathrm{~b} * \mathrm{c}: \mathrm{bcca}=\mathrm{b} * \mathrm{c} * \mathrm{c} * \mathrm{a}: \mathrm{caab}=\mathrm{c}^{*} \mathrm{a} * \mathrm{a} * \mathrm{~b}$
Indices:
' Low and high values of $\mathrm{h}, \mathrm{k}, \mathrm{l}$
CLS
PRINT : PRINT
PRINT " Enter low and high limits for Müller indices (-4 to 4). Be-"
PRINT " ware that using the entire range will result in an overlong"
PRINT " calculation (more than 330,000 pairs of planes). It may be"
PRINT " a good idea to start with a narrow range of indices and to"
PRINT " repeat the calculation with an extended range if it appears"
PRINT " necessary."
PRINT
PRINT " Entering identical values for high and low values of Müller"

```
PRINT " indices for the first plane will restrict the calculation"
PRINT " to the angles built with that specific plane."
PRINT : PRINT : PRINT
GOSUB ContinueOrQuit
```

hl:

CLS
PRINT " Enter low limit for hl-index "
GOSUB IndexLimit
Hlmin = Limit
PRINT " Enter high limit for hl-index "
GOSUB IndexLimit
Hlmax $=$ Limit
IF Hlmin > Hlmax THEN GOTO hl
kl :

CLS
PRINT" Enter low limit for kl-index "
GOSUB IndexLimit
Klmin $=$ Limit
PRINT " Enter high limit for kl-index "
GOSUB IndexLimit
$\mathrm{K} \operatorname{lmax}=$ Limit
IF Klmin $>\mathrm{K} 1$ max THEN GOTO kl

11:

CLS
PRINT ". Enter low limit for 11 -index "
GOSUB IndexLimit
Llmin $=$ Limit
PRINT " Enter high limit for 11 -index "
GOSUB IndexLimit
LImax $=$ Limit
IF L1min > LImax THEN GOTO 11

h2:

CLS
PRINT " Enter low limit for h2-index "
GOSUB IndexLimit
H2min = Limit
PRINT " Enter high limit for h2-index "
GOSUB IndexLimit
$\mathrm{H} 2 \max =$ Limit
IF $\mathrm{H} 2 \min >\mathrm{H} 2 \max$ THEN GOTO h2
k2:
CLS

```
PRINT " Enter low limit for k2-index "
GOSUB IndexLimit
K 2 min \(=\) Limit
PRINT " Enter high limit for k2-index "
GOSUB IndexLimit
\(\mathrm{K} 2 \max =\) Limit
IF K2min > K2max THEN GOTO k2
```

12 :

```
CLS
PRINT " Enter low limit for l2-index "
GOSUB IndexLimit
L2min = Limit
PRINT " Enter high limit for 12-index "
GOSUB IndexLimit
L2max = Limit
IF L2min > L2max THEN GOTO 12
```

ReviewIndices:
' Print limits to check input

```
CLS
PRINT
PRINT " Hlmin = "; Hlmin, "Hlmax = "; Hlmax
PRINT " Klmin = "; Klmin, "Klmax = "; Klmax
PRINT " Llmin = "; Llmin, "Llmax = "; Llmax
PRINT
PRINT " H2min = "; H2min, "H2max = "; H2max
PRINT " K2min = "; K2min, "K2max = "; K2max
PRINT " L2min = "; L2min, "L2max = "; L2max
GOSUB Correct
' Check input data for errors
IF Answer$ = "N" THEN GOTO Indices
```

ScreenOrDisk: ' Print angles to screen or disk
CLOSE \#1: CLOSE \#2
' Ensure all channels are closed
PRINT : PRINT
PRINT " Output results to disk ? (Y/N)"
PRINT : PRINT
Flag\$ = " $"$
WHILE Flag\$ <> "Y" AND Flag\$ > "N"
Flag $\$=$ UCASE $($ INKEY $\$)$
WEND

```
IF Flag$ = "N" THEN ' Output angles to screen
    Fl = 1: OPEN "SCRN:" FOR OUTPUT AS #1
```

```
ELSE 'Output angles to disk
    Fl = 2: OPEN "ANGLES.CMC" FOR OUTPUT AS #2
    PRINT #Fl, " Counter h1 k111 h2 k2 l2 Angle/0"
    PRINT #Fl,
END IF
```

TrigFunctions:

> 'Sin and Cos functions of α, β, γ, ' used in calculation of angles

```
sa = SIN(alpha): sb = SIN(betta): sg = SIN(gamma)
ca= COS(alpha): cb = COS(betta): cg= COS(gamma)
sasa = sa * sa: sbsb = sb * sb: sgsg = sg * sg
cabg = ca* cb - cg: cbga = cb * cg-ca: cgab =cg* ca - cb
```

MainProgram:
' Angles between all possible
' pairs of planes
Counter $=0$
FOR hl $=$ Hlmin TO Hlmax
FOR $\mathrm{kl}=\mathrm{K} 1$ min TO Klmax
FOR 11 = L1min TO L1max
FOR h2 $=\mathrm{H} 2 \min$ TO H2max
FOR k2 $=\mathrm{K} 2$ min TO K2max
FOR $12=$ L2min TO L2max

$$
\begin{aligned}
& \mathrm{Scl}=\operatorname{ABS}\left(\mathrm{h} 1^{\wedge} 3\right)+\operatorname{ABS}\left(\mathrm{k} 1^{\wedge} 3\right)+\operatorname{ABS}\left(11^{\wedge} 3\right) \\
& \mathrm{Sc} 2=\operatorname{ABS}\left(\mathrm{h} \wedge^{\wedge} 3\right)+\operatorname{ABS}\left(\mathrm{k} \wedge^{\wedge} 3\right)+\operatorname{ABS}\left(12^{\wedge} 3\right)
\end{aligned}
$$

' The sum of cubes is unique, ' unlike the sum of squares.
' Skip the following planes:

IF Scl $=0$ OR Sc2 $=0$ THEN GOTO Jump	' (000)-no such plane
IF Scl $=8$ OR Sc2 $=8$ THEN GOTO Jump	' (200), (020), (002)
IF Scl $=16$ OR Sc2 $=16$ THEN GOTO Jump	' (220), (202), (022)
IF Scl $=24$ OR Sc2 $=24$ THEN GOTO Jump	' (222)
IF Sc1 $=27$ OR Sc2 $=27$ THEN GOTO Jump	' (300), (030), (003)
IF Scl $=54$ OR Sc2 $=54$ THEN GOTO Jump	' (330), (303), (033)
IF Scl $=64$ OR Sc2 $=64$ THEN GOTO Jump	' (400), (040), (004)
IF Scl $=72$ OR Sc2 $=72$ THEN GOTO Jump	' (420), (204), (042)
	' (402), (024), (240)
IF Scl $=80$ OR Sc2 $=80$ THEN GOTO Jump	' (422), (242), (224)
IF Scl $=81$ OR Sc2 $=81$ THEN GOTO Jump	${ }^{\prime}(333)$
IF Scl $=128$ OR Sc2 $=128$ THEN GOTO Jump	' (440), (404), (044)
IF Scl $=136$ OR Sc2 $=136$ THEN GOTO Jump	' (442), (424), (244)
IF Scl $=192$ OR Sc2 $=192$ THEN GOTO Jump	' (444)

' Same (1) or parallel (2) plane
IF $\mathrm{h} 1=\mathrm{h} 2$ AND $\mathrm{k} 1=\mathrm{k} 2$ AND $11=12$ THEN GOTO Jump
IF $\mathrm{h} 1=-\mathrm{h} 2$ AND $\mathrm{k} 1=-\mathrm{k} 2$ AND $11=-12$ THEN GOTO Jump

GOSUB Angle

ResultsOut:
Counter $=$ Counter +1

IF $\mathrm{Fl}=1$ THEN
IF INT ((Counter - 1) / 20) $=($ Counter -1$) / 20$ THEN
GOSUB ContinueOrQuit
CLS
PRINT \#Fl, " Counter hl kl 11 h2 k2 12 Angle/ ${ }^{\circ n}$
END IF
END IF
' $\cos (f i)$ is calculated, where fi
' is the angle between the planes
' Results to screen or disk
' If output is sent to screen, 'print "pages" with 20 rows

	' Disk output - continuous print
Format\$ = " \#\#\#\#\#\# \#\# \#\# \#\#	\#\# \#\#\#\# \#\#\#.\#\#"
PRINT \#Fl, USING Format\$;	ter; h1; k1; 11; h2; k2; 12; fi

Jump: ' Jump here after every calculated ' angle or skipped plane
NEXT 12
NEXT $k 2$
NEXT h2
NEXT 11
NEXT kl
NEXT hl
RestartOrEnd: ' Restart or terminate

IF Fl $=1$ THEN GOTO ScreenOrDisk
IF Fl $=2$ THEN END \quad 'Avoid loss of saved disk data

Angle: \quad ' Subroutine for angle calculation '

$$
\begin{aligned}
& \mathrm{Aa}=\mathrm{aabb} * 11 * 12 * \text { sgsg }+\mathrm{bbcc} * \mathrm{~h} 1 * \mathrm{~h} 2 * \text { sasa }+\mathrm{ccaa} * \mathrm{k} 1 * \mathrm{k} 2 * \text { sbsb } \\
& \mathrm{Aa}=\mathrm{Aa}+\mathrm{abbc} *(\mathrm{~h} 1 * 12+\mathrm{h} 2 * 11) * \text { cgab } \\
& \mathrm{Aa}=\mathrm{Aa}+\mathrm{bcca} *(\mathrm{k} 1 * \mathrm{~h} 2+\mathrm{k} 2 * \mathrm{~h} 1) * \mathrm{cabg} \\
& \mathrm{Aa}=\mathrm{Aa}+\mathrm{caab} *(\mathrm{k} 1 * 12+\mathrm{k} 2 * 11) * \mathrm{cbga} \\
& \mathrm{Bb}=\mathrm{aabb} * 11 * 11 * \operatorname{sgsg}+\mathrm{bbcc} * \mathrm{~h} 1 * \mathrm{~h} 1 * \text { sasa }+\mathrm{ccaa} * \mathrm{k} 1 * \mathrm{k} 1 * \text { sbsb } \\
& \mathrm{Bb}=\mathrm{Bb}+2 * \mathrm{abbc} * \mathrm{~h} 1 * 11 * \mathrm{cgab} \\
& \mathrm{Bb}=\mathrm{Bb}+2 * \mathrm{bcca} * \mathrm{k} 1 * \mathrm{~h} 1 * \mathrm{cabg} \\
& \mathrm{Bb}=\mathrm{Bb}+2 * \mathrm{caab} * 11 * \mathrm{k} 1 * \mathrm{cbga} \\
& \mathrm{Cc}=\mathrm{aabb} * 12 * 12 * \operatorname{sgsg}+\mathrm{bbcc} * \mathrm{~h} 2 * \mathrm{~h} 2 * \text { sasa }+\mathrm{ccaa} * \mathrm{k} 2 * \mathrm{k} 2 * \text { sbsb }
\end{aligned}
$$

```
\(\mathrm{Cc}=\mathrm{Cc}+2 * \mathrm{abbc} * \mathrm{~h} 2 * 12 *\) cgab
\(\mathrm{Cc}=\mathrm{Cc}+2\) * bcca \(^{*} \mathrm{k} 2\) * h2 * cabg
\(\mathrm{Cc}=\mathrm{Cc}+2 * \mathrm{caab} * 12 * \mathrm{k} 2 *\) cbga
\(\operatorname{cosfi}=\mathrm{Aa} / \operatorname{SQR}\left(\mathrm{Bb}^{*} \mathrm{Cc}\right)\)
IF \(\mathrm{ABS}(\operatorname{cosfi})=1\) THEN
    \(\mathrm{fi}=0\)
ELSE
    \(\mathrm{fi}=180 / \mathrm{Pi} *(\mathrm{Pi} / 2+\operatorname{ATN}(\operatorname{cosfi} / \mathrm{SQR}(1-\operatorname{cosfi} * \operatorname{cosfi})))\)
END IF
```


RETURN

Correct: ' In case of error, reenter data

PRINT : PRINT

PRINT " Are these values correct? (Y/N)"
Answer\$ = " $"$
WHILE Answer\$ < "Y" AND Answer\$ <> "N"
Answer \$ = UCASE\$(INKEY\$)
WEND

RETURN

ContinueOrQuit: ' Space - to continue execution;
' Q - to quit; R - for a new run
LOCATE 23
PRINT " Press space to continue, 'Q' to quit or 'R' for a new run"
Sp\$ = ""

```
WHILE (Sp$ <> " " AND Sp$ <> "Q" AND Sp$ <> "R")
    Sp$ = UCASE$(INKEY$)
WEND
```

IF $\mathrm{Sp} \$=$ "Q" THEN END
IF $\mathrm{Sp} \$=$ "R" THEN RUN

RETURN

IndexLimit:
'Set limits for h, k, l

```
Limit = 5
WHILE ABS(Limit) > 4 OR INT(Limit) <> Limit
    LOCATE CSRLIN - 1,32
    INPUT Limit
WEND
```

RETURN

Резиме
 CRYMCALC - КОМПЈУТЕРСКА ПРОГРАМА ЗА ПРЕСМЕТКИ ВО ВРСКА СО МОРФОЛОГИЈАТА НА КРИСТАЛИТЕ
 Владимир М. Петрушевски ${ }^{1}$, Владимир І́. Ивановски ${ }^{1}$ и Костадин Г. Тренчевски ${ }^{2}$
 ${ }^{1}$ Инсӣиӣиуй за хемија, ПМФ, Универзийети „Св. Кирил и Метиодиј",
 Архимедова 5, Скойје, Рейублика Македонија
 Архимедова 5, Скойје, Рейублика Македонија

Клучни зборови: индексирање на површините на кристали; Милерови индекси; кристална рамнина; пресметка на агол

Точно индексирање на површините од монокристали е важно во многу подрачја на спектроскопијата, кристалографијата и физиката и хемијата на цврста состојба воопшто. Прецизното мерење на аглите, заедно со познавањето на параметрите на елементарната ќелија, овозможува сигурна идентификација на плоските. Изведена е равенка за пресметување на вредноста на аголот поме́́y две рамнини во криста-

лот, зададени со нивните Милерови идекси, за најопшт случај (косоаголен координатен систем). За пресметување на теориската вредност на аголот помеfy различни двојки рамнини е напишана компјутерска програма (CRYMCALC) во програмскиот јазик Qbasic. Пресметаната вредност што е најблиска до измерената открива за која двојка рамнини станува збор.

