
STEREOMETRIC PROJECTION  

OF THREE-DIMENSIONAL AND FOUR-DIMENSIONAL OBJECTS  

IN CURVILINEAR (HYPERBOLOID AND PARABOLOID) PROJECTIVE SPACE 

Risto Tashevski and Vladimir Dukovski 
The "Sts. Cyril and Methodius" University 

Skopje, MACEDONIA 

ABSTRACT 
 

In this paper a mathematical model and a computer 
program for stereometric projection of 3D and 4D objects 
in curvilinear (hyperboloid and paraboloid) projective 
spaces are presented. The aim of this projection is a realistic 
presentation of objects in the human surrounding. This 
means that the presented objects should not be different 
from the real ones. In reality the objects are projected on the 
retina of the eye mechanism. The retina does not have a 
regular geometric shape. The shape of the retina could be 
approximated with a hyperboloid or paraboloid surface. The 
way to the realistic visual presentation of objects is the 
stereometrical projection in the curvilinear projective space. 
Stereometricaly projected objects in various projective 
spaces presented on two-dimensional plane (paper, monitor)  
are received by optical apparatus (stereoscope, glasses).  
Keywords: stereometry (stereo geometry), curvilinear 
(hyperboloid, paraboloid) projective space, 3D and 4D 
objects. 
 
1. INTRODUCTION 
 
The virtual reality today is the most current and the most 
fashionable theme in which various scientific fields have 
been involved. Virtual reality means visualization of a 
certain space in which there is a possibility for interactive 
action. This space should produce feeling that the 
visualization is real, that he/she is placed in a real world in 
which he/she could actively participate. In order to achieve 
this, all the sense components should be simulated - sight, 
hearing, touch, taste, feelings (psychological moments) and 
reactions of the other subjects and objects in that space. 
Stereometric projection is used for sight simulation, as a 
visual component of the virtual reality. The stereometric 
projection begins from two centers on a vertical plane or 
surface, through which two projections are received (Geiger 
et al, 1995). When these projections are viewed through an 
optical equipment they create a three-dimensional picture in 
the viewer's eyes. 
 
In the human eye mechanism, which consists of two eyes, 
objects are presented as independent projections on the 
retina of each eye. The two projections are connected into 

three-dimensional image in the human brain. The eye retina 
does not have regular geometric shape and can be closely 
described as ellipsoid, hyperboloid or paraboloid 
(Rozenfeld, 1969). The use of curvilinear projective space  
for a realistic presentation of objects is justified with the 
form of the retina projective space.

  

 
This article deals with the projection of objects on 
hyperboloid and paraboloid projective spaces, as a close 
approximation of the retina projective space. 
 
2.  STEREOMETRIC PROJECTION  
     IN A HYPERBOLOID PROJECTIVE SPACE 
 
Stereometric projection in a hyperboloid projective space 
means projecting from two centers OL(O'L,O''L) and 
OR(O'R,O"R) (Figure 1) on a hyperboloid surface. The cube 
is projected on a hyperboloid surface with radius R (of velar 
circle) from two centers which are placed on a basic circle, 
with radius r or a diameter equivalent to the eye distance 
65-70 mm (Shotikov and Mihno, 1972). The applied 
methodology is explained in Figure 2. Projective rays are 
drawn from the point A(A',A") (of the cube), in a way they 
can tangent the basic circle in the points O1(O'1,O"1) and 
O2(O'2,O"2) (eye points). The stereometric projections of 
the point A(A',A") are formed at the place where projective 
rays stab the hyperboloid, (A’L,A’R) above the horizontal 
projective plane (first projection). The second stereometric 
projections of the point A, A"L and A"R can be found on the 
ordinate of the first projections of the points and on the 
second projections of the projective rays. The z coordinate 
of the second projection can be defined with introduction of 
the auxiliary axis x4

1
. 

 
A hyperboloid coordinate system Ox1y1 is introduced in 
order to present the received stereometric projections on a 
paper or computer screen. Axis x1 follows circle and y1 
hyperbola. The other notations are : 
 
R   - radius of velar circle  
r - radius of the basic circle 
x[i], y[i], z[i] - coordinates of the real object 
l = O A1

 - distance from the eye point O1 to the vertex A 



l1 = C A' '  - distance from the center of the hyperboloid to 
the vertex A 

d - main distance 
a, b - hyperboloid axis 
 

 
Figure 1. Method for developing stereometric projections of 

a cube in a hyperboloid space 

 
 

Figure 2. Graphical representation of the mathematical 
model for stereometric projections  
in a hyperboloid projective space 

The auxiliary point N is introduced for finding the 
coordinates (xL and xR) of the stereometric points AL and AR. 
Summing the distances (lengths of the circled vault) from 
point N we get (figure 2) : 

x A C A N NAi R K K K R[ ]

'      (1) 

If the distances (the lengths of the circled vaults) are 
computed using the given angles , ,   and the radius Rs, 
we get : 

x R R Ri R s s s[ ]          (2) 

With the introduction of coordinates x[i], y[i], z[i] and the 
parameter r, we get : 
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Using analogy we get : 
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The relationship between the shortened radius Rs and the 
radius of the hyperboloid surface R is : 

R d rs  2 2      (5) 
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Fourth projection (A
IV

) defines the coordinates yL and yR, 

which are equal to the length of the hyperbolic vault in the 

limits from the point (a,0) to the point (x,z) expressed with 

the integral : 
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The value of the eccentricity e can be computed with the 

relation a b a e2 2 2 2  . The integral (6) can be expressed 

further in parametric form in the limits from 0 to  : 
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where a R r 2 2      
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The number of considered members of the bynom row 
depends on the expected accuracy. Each member of the row 
is integrated in the limits from 0 to .  



With the stereometric projections available, it is easy to get 
the coordinates of the points of the real object by using the 
reverse procedure (Lengagne et al, 1996): 

x li[ ] cos 1  ;   y li[ ] sin 1  ;   z li[ ] tan  ;  (8) 
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With the application of the mathematical expressions (3), 

(4) and (7) an algorithm has been created for development 

of stereometric projections of 3D and 4D objects in a 

hyperboloid space. 
 
3.  STEREOMETRIC PROJECTION  
     IN A PARABOLOID PROJECTIVE SPACE 
 
The procedure for stereometric projection in a paraboloid 
projective space (Figure 3) follows the same pattern as the 
case of hyperboloid projective space. Figure 4 explains the 
mathematical model. New notations are : 
 
R   - radius of a paraboloid surface  
l1 = C A' '  - distance from the center of the paraboloid to 

the vertex A 
p - distance from directress to the focus of the 

paraboloid  
 

 
 

Figure 3. Method for developing stereometric projection of 
a cube in a paraboloid projective space 

 

Relations (1), (2), (3) and (4) also can be used in a case of 
paraboloid projective space. In this case values for d and l 
in relation (5) are :  
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Figure 4. Graphical representation of the mathematical 
model for stereometric projection in a paraboloid  

projective space 
 
 

Using the fourth projection we can define the coordinates yL 

and yR, which are equivalent to the length of the parabolic 

vault in the interval (0,0) and (x,z), that can be expressed 

with an integral:  
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With the introduction of u p z i 2 2

[ ]
,  dv dz i [ ]

 , and 

partial integration, we get : 
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and further : 
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where   p R r 2 2 ,     

The coordinates of the vertexes of the real objects can be 
calculated using relations (8). 
 
With the use of expressions (3), (4) and (11) an algorithm 
for stereometric projections of 3D and 4D objects in 
paraboloid projective space has been developed.  



4.  COMPUTER PROGRAM AND EXAMPLES  
 
Based on the presented methodology a computer program 
for development of stereometric projections in curvilinear 
projective space has been developed (Figure 5). Some 
examples of the use of this computer program are presented 
in the figures 6,7,8,9,10,11,12 and 13. 
 

 
 

Figure 5. Block diagram of algorithm for developing of 

stereometric projections in a hyperboloid and paraboloid 

projective space 
 

The characteristic feature of the stereometric projection on 
a hyperboloid and paraboloid surface is that all the edges of 
the projections are curved lines. The curved lines appear as 
a result of the round and hyperbolic extracts of the 
hyperboloid, and of the round and parabolic extracts of the 
paraboloid (Figure 6,7,8,9). 

 
Figure 6. Stereometric projections of a cube in a 

hyperboloid projective space 

 
Figure 7. Stereometric projections of 3D object in a 

hyperboloid projective space 

In case of stereometric projection of 4D objects, they are 
transformed first in 3D objects and then through their 
vertexes the projective rays of the two eye points are drawn 
(Banchoff, 1978) (Hoffmann and Zhou, 1991). 

 
Figure 8. Stereometric projections of a cube in a paraboloid 

projective space. 

 
Figure 9. Sterometric projections of 3D object in a 

paraboloid projective space. 

 
Figure 10. Stereometric projections of 4D cube in a 

hyperboloid projective space 

 
Figure 11. Stereometric projections of 4D surface in a 

hyperboloid projective space 

 f(x, y, z, w) = { cos(x), sin(x), cos(y)sqrt(y
2
), sin(y) } 



Figure 12. Stereometric projections of 4D cube in a 
paraboloid projective space. 

Figure 13. Stereometric projections of 4D surfaces in a 
paraboloid projective space 

f(x,y,z,w) = {sin(x)cos(x), cos(y), ysin(x), sin(x) cos y} 

6. CONCLUSION

The stereometric projection in a curvilinear projective space 
is far more realistic then the stereometric projection on a 
plane. Algorithms and computer program for projecting of 
3D and 4D objects on a hyperboloid and paraboloid space 
were presented. Some examples of the use of the computer 
program were presented also. Further  development of the 
realistic presentation of objects should firmly take in 
consideration the projective space of the objects. 
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