XIII_466

Билтен на Мак. фарм. друштво, 1,2 (1991) 47-57.

Алкалонд - Скопје, Институт за хемија - ПМФ Скопје

СОВРЕМЕНИ ПРИОДИ КОН ИСПИТУВАЊАТА НА НОВИ ЛЕКОВИ*

Б. Панзова, Б. Богданов

Изложени се основните методи за испитувањата на нови лекови базирани на квантитативната корелација помеѓу хемиската структура и фармаколошкото дејство. Прикажана е можноста за примена на некои тополошки индекси за студирање на микробицидната активност на серија структурни пиролинон аналози врз Escherichia coli

1. УВОД

Сложен и трновит е патот од замисла до реализација на нов лек т.е. пуштање во промет на готов фармацевтски облик. Овој процес вклучува многу фази, а централно место, секако, завзема фазата на селекција односно "просејување" (screening) на сите потенцијално употребливи соединенија низ "сито" со што се одделуваат само биолошки најактивните соединенија. Потполно е разбирлива желбата да се знае проектирањето на лекови; планирањето и развојот на модели на кои се темели изборот на соединенија, потенцијални фармацевтски препарати, во литературата е познат како дизајнирање на лекови.

Основа за проектирање се теоретските и емпириските сознанија за биолошката активност на хемиските соединенија. За оваа област постои екстензивна литература, на пр. (1, 2, 4, 8, 22, 24, 27).

Современите приоди кон изучување на нови лекови се базираат на фактот дека постои квантитативна поврзаност помеѓу хемиската структура на молекулите и нивната биолошка активност (Quantitative Structure – Activity Relationship – QSAR). Во литературата постои опширен експериментален материјал кој ја потврду-

^{*}Материјалот е презентиран како пленарно предавање на Стручниот состанок на Сојузот на здруженијата на фармацевтите на Македонија, Охрид 1990.

ва ваквата взаемна поврзаност. Исто така, општо е прифатен постулатот дека структурата на супстанцата и предизвиканата од неа биолошка реакција е однос од типот причина – последица кој математички се сведува на следното:

– Структура S на хемиското соединение Y, со ознака S_y, може да се изрази со сет од некои структурни параметри; S_y={Sⁱ_y}, каде i=1, 2..., n

– Постои врска помеѓу структурата на супстанцата и неговата биолошка активност, т.е. постои некоја функција F_y (S_y , A_y) која што ја поврзува активноста A на супстанцата Y со неговата структура S_v или со одделни нејзини карактеристики – F_y (S_y , A_y)

– Ако видот на функцијата F_y (S_y , A_y) е установен, тогаш функцијата може да се екстраполира на сродни соединенија Y_1 , Y_2 , Y_3 ,... со слична структура, кои се разликуваат по супституентите X_1 , X_2 ,... или по нивната положба во молекулата.

– Со анализа на сет од функции F_{y1} (S_{y1}, A_{y1}), F_{y2} (S_{y2}, A_{y2})... можно е да се одреди последователноста на активноста на супстанците, на пример A_{x1} > A_{x2} > A_{x3}..., во некоја сродна група соединенија.

При ова, прогнозирање на биолошката активност е ограничена на дадената група соединенија, кои припаѓаат на некоја основна структура, што овозможува да се скрати бројот на експериментите за биолошката активност на нови членови кои припаѓаат на таа основна структура.

За да се добие работен модел (т.е. F(S,A)), чија применливост понатаму треба да се потврди, се претполага дека молекулата на биолошко активната супстанца претрпува во организмот ред физичкохемиски и хемиски трансформации: растворање, сорпција, распределба, сврзување, хемиски реакции и сл. Очигледно дека било која од овие етапи или збир од некои од нив, во секој конкретен случај, може да влијае на фармаколошкото дејство на супстанцата или да е лимитирачки стадиум во сумарниот ефект дефиниран како биолошка активност.

Ако е исполнет првиот услов т.е. физичко хемиските карактеристики на супстанцата ја рефлектираат неговата структура преку сет од некои негови параметри, тогаш за да се одреди видот на функцијата F_y (S_y , A_y) неопходно е A да се изрази квантитативно [A]- преку концентрација или други квантитативни мерки за биолошкиот ефект.

2. КЛАСИФИКАЦИЈА НА ТЕОРЕТСКИТЕ ПРИСТАПИ

Во литературата постојат повеќе пристапи за класификација на QSAR методите. Ќе биде изложена класификацијата според литература [1.a., стр. 267]. Според оваа класификација постојат четири основни пристапи:

1. СТРУКТУРНО-КРИПТИЧНИ (корелација својство – активност)

- 2. СТРУКТУРНО-ИМПЛИЦИТНИ (квантитативно хемиско моделирање, интеракција, лек и рецептор)
- СТРУКТУРНО-ЕКСПЛИЦИТНИ (граф теоретски и други корелации, структура и активност)
- 4. СТРУКТУРНО ГРАФИЧКИ (компјутерска графика)

Во Табела 1 се прикажани детално QSAR методите кои денес се применуваат при дизајнирањето на лекови. За секој од наведените методи е назначена само основната литература.

Структурно-криптичните методи често се базираат на голем број експериментални параметри кои се доведуваат во врска со различни видови на молекуларни и/или биолошки својства. За разлика од нив, структурно-експлицитните QSAR модели често користат неколку едноставно дефинирани структурни параметри, кои потоа се доведуваат во врска со својствата на молекулите. Квантно-хемиските QSAR методи содржат елементи и на структурнокриптичките и структурно-експлицитните QSAR модели. Тие во основа ги користат темелните принципи на квантната механика, меѓутоа поради комплексноста на пресметувањата, понекогаш, потребно е да се прави компромис при употребата на овие методи. Структурно-графичките модели се, секако, најнови пристапи во QSAR. Компјутерската графика во хемијата овозможува визуелизација на стерната тродимензионална структура на молекулата. Овој пристап е особено важен во дизајнирањето на лекови бидејќи визуелно може да се истражува како даден лек (вистински или хипотетичен) одговара на рецепторското место на протеинот, од што може да се заклучи кој дел од молекулата треба да се измени за да се зголеми делотворноста на лекот.

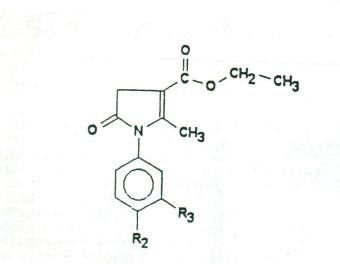
3. QSAR ИСПИТУВАЊА НА АНТИМИКРОБНАТА АКТИВНОСТ НА ПИРОЛИНОНИ

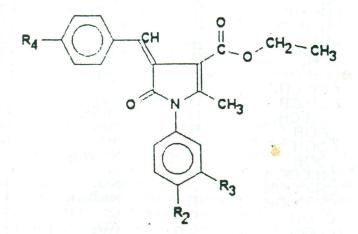
Испитувањата на антимикробната активност на пиролиноните прикажани на Слика 1 и Табела 2 се извршени со примена на структурно-експлицитни QSAR модели, поточно со примена на граф-теоретски(топологиски) индекси. Топологиските индекси се погодни за преведување на хемиските конституции во броеви. Таквите молекуларни дескриптори кои што можат да ја квантифицираат разгранетоста, присуството на прстени, сложеноста и сличноста се употребуваат за поставување на квантитативна релација во однос на структурата и биолошката активност. Стандардна стратегија при поставување на QSAR шемата е следна:

- најпрво, група од молекули се карактеризира со помош на поволно одбрани дескриптори.
- потоа се поставува квантитативна релација (со помош на погодна статистичка анализа) помеѓу молекуларниот дескриптор и биолошката активност.

Тестирани се 12 топологиски индекси [4], во оваа прилика ќе ги прикажеме резултатите добиени со два од нив: индексот М1 на загребската група (пресметан според равенка 1), и Wiener-ов број (пресметан според равенката 2). за 36 пролинони прикажани во Табела 3.

4 Билтен 91


Табела 1 Типови QSAR модели


Модел*	литература**				
СТРУКТУРНО-КРИПТИЧНИ МОДЕЛИ					
Free-Wilson (additivity) model	(5)				
Hansch model (Free energy)	(6)				
Lien model	$\langle 7 \rangle$				
Receptor mapping	(8)				
Decision tree	(9)				
Factor analysis	(10)				
Cluster analysis	(11)				
Pattern recognition	(12)				
Discrimination analysis	(13)				
Molecular mechanics method	(14)				
Van Der Waals volume	(15)				
Principal component method	(16)				
Distance geometry	(17)				
Organism parametrization	(18)				
СТРУКТУРНО-ИМПЛИЦИТНИ МОДЕЛИ	ut et al. Alle 20m				
Quantum-chemical indices	(19, 20)				
Ab initio computation of molecular surface and volum					
Mo calculation	(22)				
Quantum-statistical models	(23)				
Ab initio MO calculations	(24)				
СТРУКТУРНО-ЕКСПЛИЦИТНИ МОДЕЛИ					
Non-adjacent numbers	(25)				
Graph-theoretical indices	(26)				
Connectivity index	(27)				
Receptor mapping	(28)				
Augmented atomic fragments	(29)				
Information indices	(30)				
Path numbers	(31)				
Similarity approach	(32)				
Walks	(33)				
Atomic index	(34)				
Non-emprical clustering	(35)				
ID numbers	(36)				
Molecular shape descriptors	(37)				
Computer statistics	(38)				
СТРУКТУРНО-ГРАФИЧКИ МОДЕЛИ					
Computer graphics	(39)				
- generated by MM method	(40)				
- using Ab initio SCF Mo techniques	(41)				
- Coupled to the X-rey crystallography	(42)				

* имињата на моделите се на англиски јазик

** паведена е само основна литература

ers die neimerskonstructuren of weekwage zondoge executionen. Erstenden of his constructuren in desenantmatere organisteren einen einen einen einen einen einen einen einen e

Сл. 1. Основна структура на: I. N-фенил-2-метил-3-карбетокси-5-пиролинон II С(4)-бензилиден-N-фенил-2-метил-3-карбетокси-5-пиролинон

51

Табела 2

Супституенти на испитуваните соединенија кои се изведени од структурите прикажани на слика 1 и соодветните експериментални антимикробни активности во однос на Escherichia coli

	R ₂	R ₃	R ₄	log (1/c. E. coli
$\begin{array}{c} 1.\\ 2.\\ 3.\\ 4.\\ 5.\\ 6.\\ 7.\\ 8.\\ 9.\\ 10.\\ 11.\\ 12.\\ 13.\\ 14.\\ 15.\\ 16.\\ 17.\\ 18.\\ 19.\\ 20.\\ 21.\\ 22.\\ 23.\\ 24.\\ 25.\\ 26.\\ 27.\\ 28.\\ 29.\\ 30.\\ 31.\\ 32.\\ 33.\\ 34.\\ 35.\\ 36. \end{array}$	H Cl Br CH ₃ OCH ₄ OHCH ₂ CH ₃ COOH CH ₂ COOH COOH H H H H Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	$\begin{array}{c} CI \\ N(CH_3)_2 \\ NO_2 \\ Cl \\ N(CH_3)_2 \\ NO_2 \\ Cl \\ N(CH_3)_2 \\ NO_2 \\ Cl \\ N(CH_3) \\ NO_2 \\ Cl \\ N(CH_3)_2 \\ O_2 \\ Cl \\ NO_2 \\ N(CH_3)_2 \\ Cl \\ NO_3 \\ N(CH_3)_2 \\ Cl \\ NO_4 \\ NO_5 \\ N(CH_3)_2 \\ Cl \\ NO_5 \\ N(CH_3)_2 \\ N(CH_3)$	$\begin{array}{c} 1.304\\ 1.440\\ 1.372\\ 1.525\\ 1.346\\ 1.371\\ 1.500\\ 1.504\\ 1.639\\ 1.682\\ 1.659\\ 1.652\\ 1.555\\ 1.930\\ 1.789\\ 1.626\\ 1.926\\ 1.772\\ 1.736\\ 1.772\\ 1.736\\ 1.772\\ 1.736\\ 1.716\\ 1.689\\ 1.563\\ 1.937\\ 1.731\\ 1.775\\ 1.829\\ 1.697\\ 1.694\\ 1.824\\ 1.776\\ 1.701\\ 1.804\\ 1.758\\ 1.791\\ 1.855\\ 1.823\end{array}$

*с претставува концентрација на секоја поодделна супстанца (mol 10⁻⁶) потребна да се постигне единична зона на инхибиција од 1 мм (лит. [3,4])

52

M1 =
$$\sum_{i=1}^{N} A_i A_i$$
 каде $A_i = (A_1^2)_{ii}$; N – број на јазли (1)

W =
$$\sqrt{\frac{1}{2}} \sum_{i=1}^{N} D_{ij}(G)$$
, каде $D_{ij}(G)$ е матрица на растојание (2)

N N 1 2
$$\iota=1$$
 $\iota=1$

N

Експериментално одредување на антимикробната активност [3] на пиролинон дериватите вршена е in vitro со дифузна метода. Muler – Hinton агар е употребен како хранлива подлога кој потоа се инокулира со тест микроорганизам. Соединенија кои беа тестирани се растворени во диметилформамид со концентрации од 0,05mg, 0,1 mg и 0,15 mg, а потоа се нанесени на иникулираната подлога. Плочите се инкубирани на 37°С, и е мерена зоната на инхибиција во mm. За одредување на антимикробната активност на студираните соединенија беа употребени следните мицроорганизми: Staphylococcus aureus, Escherichia coli, Proteus mirabilis, Citobbacter frenudii и Pseudiomonas aeroginosa. За определување на односот на биолошката активност употребени се податоците за зона на инхибиција добиена со дејство на 0,15 mg супстанца. Квантитативни податоци за антимикробната активност за наведените прилинони дадени се со изразот log(1/c), каде с претставува концентрација на секоја супстанца во mol 10⁻⁶ потребна да се добие единична зона на инхибиција од 1 mm. Квантитативните податоци за биолошката активност на студираните соединенија во однос на Escherichia coli се дадени во Табела 2.

Испитувана е линеарната зависност од типот

$$\log(1/c)_{exp} = a + b [M1]$$

(3)

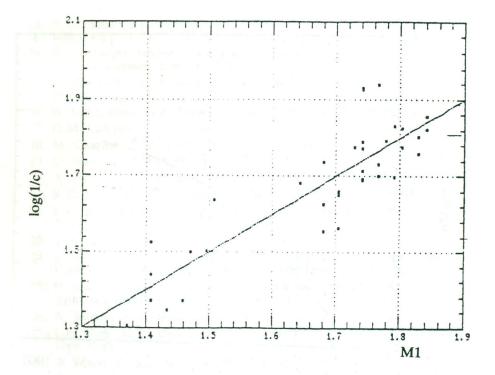
и добиени се следните статистички параметри: $a = -8.79 \ 10^{-6}$; b = 1,00; r = 0.873; s = 0.0831; F = $109^{1.34}$. На Сл. 2 е даден типичен графички приказ на линеарната зависност помеѓу М1 тополошкиот индекс и антимикробната активност. Употребувајќи ги коефициентите а и b и вредноста на топологискиот индекс М1 пресметани се антимикробните активности за секое соединение; добиените резултати се прикажани во Табела 3.

Исто така направена е анализа на нелинеарна зависност на W тополошкиот индекс и биолошката активност преку квадратна равенка од типот

$$\log(1/c)_{exp} = a + b W + c W^{2}$$
(4)

53

и добиени се следните статистички параметри: a = 1.138% b = 0.0004; c = $-6 \ 10^{-8}$; r = 0.869; s = 0.0855; F = $4636^{3.33}$. На сл. 2 е даден графички приказ на зависноста според изразот (4).

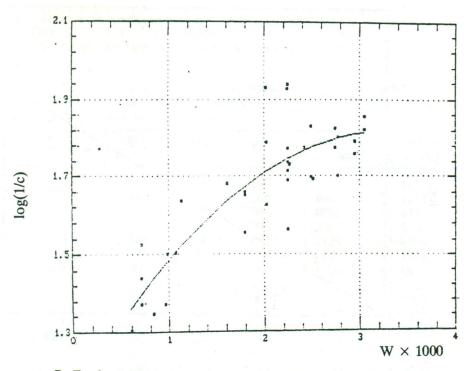

Табела 3

M1 и W Топологиски индекси со соодветно пресметани и експериментални антимикробни активности во однос на Escherichia coli за супституирани пиролинони

Молекула #	log(1/c) E. coli*	M 1	W	пресметана равенка 3	а активност равенка 4
1.	1.304	90	599	1.3711	1.4131
2.	1.440	96	706	1.4082	1.4131
3.	1.372	96	706	1.4082	1.433
4.	1.525	96	706	1.4082	1.4332
5.	1.346	100	832	1.4329	1.4569
6.	1.371	104	978	1.4577	1.4844
7.	1.500	106	960	1.4700	1.4810
8.	1.504	110	1126	1.4984	1.512
9.	1.639	112	1066	1.5071	1.5009
10.	1.682	134	1605	1.6431	1.6023
10.	1.659	144	2025	1.7049	1.6814
12.	1.652	144	2025	1.7049	1.6814
12.	1.555	140	1796	1.6802	1.6383
15.	1.930	150	2244	1.7420	1.7226
15.	1.789	150	2244	1.7420	1.7226
15.	1.626	140	1796	1.6802	1.6383
10.	1.926	150	2244	1.7420	1.7226
17. 18.	1.772	150	2244	1.7420	1.7226
19.	1.736	140	1796	1.6802	1.6383
20.	1.716	150	2244	1.7420	1.7226
20.	1.689	150	2244	1.7420	1.7226
21.	1.563	144	2014	1.7049	1.6793
23.	1.937	154	2492	1.7667	1.7692
24.	1.731	154	2492	1.7667	1.7692
24.	1.775	148	2260	1.7297	1.7256
26.	1.829	158	2770	1.7915	1.8215
20.	1.697	158	2770	1.7915	1.8215
	1.694	150	2234	1.7420	1.7207
28.		160	2742	1.8038	1.8163
29.	1.824 1.776	160	2742	1.8038	1.8163
30.	1.770	154	2508	1.7667	1.7722
31.		164	3050	1.8286	1.8742
32.	1.804 1.758	164	3050	1.8286	1.8742
33.		156	2416	1.7791	1.7549
34.	1.791	150	2950	1.8409	1.8554
35. 36.	1.855 1.823	166	2950	1.8409	1.8554

*с претставува концентрација на секоја поодделна супстанца (mol 10⁻⁶) потребна да се постигне единична зона на инхибиција од 1 мм (лит. [3,4])

Редните броеви се соодветни на молекулите од Табела 2



Сл. 2. А. Графички приказ на линеарната зависност на М1 индексот и антимикробната активност на пиролинон деривати врз Escherichia coli (види равенка 3)

Употребувајќи ги коефициентите a, b и c од изразот (4) и вредностите на Wiener-овиот број, пресметани се антимикробните активности за сите 36 испитувани пиролинони. Добиените резултати се прикажани во Табела 3.

4. ЗАКЛУЧОК

Добиените резултати укажуваат на тоа дека употребените тополошки индекси (М1 индексот на загребската група и Wienerовиот број) успешно ја одразуваат антимикробната активност на испитуваните пиролинони врз Escherichia coli. Добиени се високи коефициенти на корелација (0,873 за линеарна и 0,869 за квадратна зависност) што значи дека антимикробната активност на испитуваната серија на пиролинони може со релативно голема точност да се предвиди употребувајќи го моделот на молекуларна топологија.

В. Графички приказ на нелинеарната зависност (квадратна равенка) на Wiener-ов број и антимикробната активност на пиролинон деривати врз Escherichia coli (види равенка 4)

5. ЛИТЕРАТУРА

- 1. Acta. Pharm. Jugosl.:a. 36(2), 1986, b. 37(1), 1987 [Special Subject Issue on QSAR in Drug Research.
- 2. S. V. Nižnij, N. A. Epštejn, Uspehi himii, 47, 739 (1978)
- 3. F. Lovren, I. D. Gaon, B. Bobarević, N. Zučić, Period. Biol. 89, 299 (1987
- 4. B. Panzova, QSAR studij antimicrobne aktivnosti pirolinona, Magisterski rad, Sveučilište u Zagrebu, Farmaceutsko-biokemiski fakultet, Zagreb 1989
- 5. S.M. Free, Jr., J. W. Wilson J. Med. Chem. 7, 395 (1964).
- 6. C. Hancsch Acc. Chem. Res. 2, 232 (1969)
- 7. E. Lien J. Am. Pharm. Educ. 33, 368 (1969).
- L.B. Kier Fundamental Concepts in Drug Receptor Internacion J. F. Morgan, D.J. Triggle, Academic, New York, 1970, str. 15.
- 9. J.G. Topliss J. Med. Chem. 15. 1006 (1972)
- 10. M.L. Wiener, P.H. Wiener J. Med. Chem. 16, 665 (1973).
- 11. C. Hansch, S.H. Unger, A.B. Forsythe J. Med. Chem. 16, 1217 (1973)
- 12. B.R. Kowalski, C.F. Bender J. Am. Chem.Soc. 95, 686 (1973).

- Y.C. Martin, J.B. Holand, C.H. Jarboe, N. Plotnikov J. Med. Chem. 17, 409 (197)
- 14. N.L. Allinger Advances in Physical Organoc Chemistry Vol. 13, str. 1, V. Gold, Academoc, London, 1976.
- 15. I. Moriguchi, Y. Kanada, K. Kamatsu Chem. Pharm. Bull. 24, 1799 (1976).
- 16. A. Cammarata, G.K. Menon J. Med. Chem. 19, 739 (1976).
- 17. G.M. Crippen, J. Med. Chem. 24, 198 (1981).
- 18. M. Charton, Acta Pharm. Jugosl. 36, 97 (1986).
- 19. O. Schmidt Z. Phys, Chem. 39, 59 (1939).

1 5 - 1

- 20. A. Pullman, B. Pullman Quantum Biochemistry, Willy, New York, 1963.
- 21. R.B. Herman J. Phys, Chem. 75, 363 (1971).
- 22. L.B. Kier Molecular Orbital Theory in Drug Research, Academic, New York 1971.
- 23. T. K. Lin, J. Med. Chem. 17, 151 (1974)
- 24. J. Gerhards, E.L. Mehler, QSAR and Strategies in the Design of Bioactiv Compounds, J.K. Seydel, VCH, Weinheim 1985, str. 153
- 25. H. Hosoya Mathematical and Computational Concepts in Chemistry, N. Trinastić, Horwood, Chichester 1986, 110.
- 26. A. Sabljić, N. Trinajstić, Acta, Pharm. Jugosl. 31, 189 (1981)
- 27. L.B. Kier, H.H. Hall Molecular Connectivity in Chemistry, Academic, New York 1976.
- 28. Z. Simon, Z. Szabadai Stud. Biophys, 39, 123 (1973).
- 29. G.W. Adamson, J.A. Bush J. Chem. Inf. Comput. Sci. 15, 55 (1975).
- 30. D. Bonchev Information Theoretic Indices for Characterization of Chemical Structure, Research Studies Press, Chichester 1983.
- 31. M. Randić, C.L. Wilkins J. Chem. Inf. Comput. Sci. 19, 31 (1979).
- 32. C.L. Wilkins, M. Randić, Theoret. Chim. Acta 58, 45 (1980)
- 33. M. Randić J. Comput, Chem. 1, 386 (1980).
- 34. P.G. Seybold Int. J. Quantum Chem.: Quantum Biol. Symp. 10, 95 (1983).
- 35. M. Randić, B. Džonova-Jerman-Blažić, S.C. Grossman, D.H. Rouvray Math. Comput. Modelling B, 517 (1986).
- 36. M. Randić, J. Chem. Inf. Comput, Sci. 24, 164 (1984).
- 37. I. Matoc, G.R. Marshall Z. Naturforch. 40 a, 1121 (1985).
- G. Klopman, O.T. Macina, E.J. Simon, J.M. Hiller Theochem 134, 289 (1986).
- 39. J.D. Foley, A. Van Dam Fundamentals of Interactive Computer Graphic, Addison-Wesley, Reading, MA, 1982.
- 40. U. Burkert, N.L. Allinger Molecular Mechanics, ACS, Washington, DC, 1982.
- 41. W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople Ab initio Mo Theory, Wiley, New York, 1986
- 42. P.J. Goodford J. Med. Chem. 27 (1984) str. 557