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Abstract

Recent studies suggest that the emergence of cooperative behavior can be
explained by generalized reciprocity, a behavioral mechanism based on the
principle of “help anyone if helped by someone”. In complex systems, the
cooperative dynamics is largely determined by the network structure which
dictates the interactions among neighboring individuals. These interactions
often exhibit multidimensional features, either as relationships of different
types or temporal dynamics, both of which may be modeled as a “multi-
plex” network. Against this background, here we advance the research on
cooperation models inspired by generalized reciprocity by considering a mul-
tidimensional networked society. Our results reveal that a multiplex network
structure may enhance the role of generalized reciprocity in promoting coop-
eration, whereby some of the network dimensions act as a latent support for
the others. As a result, generalized reciprocity forces the cooperative con-
tributions of the individuals to concentrate in the dimension which is most
favorable for the existence of cooperation.
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1. Introduction

Ever since the pioneering work of Axelrod [1] on the stability of direct
reciprocity (tit-for-tat strategy) in a lattice structured iterated prisoner’s
dilemma, a lot of effort has been put into discovering how different recipro-
cal mechanisms for emergence of cooperation fare under various topological
circumstances. In particular, in [2, 3, 4] the concept of network reciprocity
was examined, and in [5] the conditions that lead to promotion of coopera-
tion through indirect reciprocity in complex networks were explored. Other
notable studies include the role of emotions [6, 7] or punishment of defec-
tors [8, 9, 10], dynamical link formation through indirect reciprocity [11], and
even considering geographical relations [12].

Under all these mechanisms cooperation evolves as an inherent feature of
the competitiveness between the interacting individuals. Recent biological
studies, however, suggest that cooperative behavior can also emerge and
be sustained if it is based on generalized reciprocity, a rule based on the
principle “help anyone if helped by someone” [13]. In [14, 15, 16] it was
shown that cooperation may emerge under this mechanism as a consequence
of the changes in the physiological state of the individuals caused by their
positive experience from previous interactions.

The first steps towards the development of a framework to study the
role of a state-based generalized reciprocity update rule in networked soci-
eties were made in [17]. In this work, the authors developed a simple model
for pairwise interactions where individuals send cooperation requests to ran-
domly chosen neighbors. The acceptance of the requests is stochastically
determined by a sole variable called internal cooperative state which reflects
the individuals’ current welfare. A distinctive characteristic of the model is
that, in steady state, the simple decision rule promotes cooperation while, at
the same time, prevents the individuals being exploited by their respective
network environment.

While this and similar models shed valuable insights on the role that
network topology plays in promoting cooperation, most of them have so far
addressed only interactions on networks that are of one “dimension”, ignor-
ing possible multidimensional phenomena, i.e. multiplex network structures.
This is an obvious drawback since real-life networks often exhibit heteroge-
neous properties within the edge structure that are of fundamental value to
the phenomena present in the system [18]. For instance, in social network
analyses the patterning and interweaving of different types of relationships
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are needed to describe and characterize social structures [19, 20]. In telecom-
munication networks, where control of the level of cooperation displayed by
the nodes is needed to achieve efficiency [21, 22], the physical edges are often
“sliced” into multiple parts in order to support the requirement of differ-
ent devices [23, 24]. Even genetic and protein relations between organisms
constructed in multiple ways are crucial for the analysis of their coopera-
tive bindings [25, 26, 27]. Another example is cooperation ecological systems
where species interact in various ways [28].

To this end, here we extend the model introduced in [17] to account for a
multiplex network structure, with the aim to characterize the network cooper-
ation dynamics under the assumption of a state-based behavioral mechanism
rooted in generalized reciprocity1. In our model the dimensions act as plat-
forms which facilitate transactions between active members. The activity of
the individuals is modeled by constraining their presence to one dimension
per round, and by making them able to answer only to requests from that
same dimension. This assumption is consistent with the random walk models
on multiplex networks [31], and is justified in systems where the round dura-
tion is very short and/or when individuals have limited interaction capacities.
The resulting mechanism, while preventing exploitation by other individuals,
exhibits additional features that act as promoters of cooperation in a multi-
plex network structure. Specifically, by allowing for heterogeneous benefits
and costs (i.e. different parameter values across different dimensions), we
show that cooperation can survive in the observed dimension even if the cost
exceeds the benefit, as long as there is another dimension which acts as a
support (having benefit-to-cost ratio larger than one). This essential char-
acteristic of the new model comes in contrast to one-dimensional networks
where the benefit being larger than the cost is a prerequisite for cooperation.
In particular, in a one dimensional network a benefit to cost ratio less than
one implies that the cooperative individual has to carry a larger cost than the
benefit the other individual receives, therefore it may be said that coopera-
tion reduces the overall social welfare. In a multiplex network, we argue that
this decrease in social welfare in a observed dimension is compensated by a
large enough benefit to cost ratio in another dimension. Moreover, by intro-

1In this sense, we do not account for “competition” between strategies [29], nor assume
evolutionary updates or imitation [30]. Instead, we suppose that a form of a generalized
reciprocity mechanism has evolved in the consciousness of the individuals, whose further
dynamics is solely determined by the multiplex network structure.
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ducing simple dynamics for the probability that an individual is present in a
certain dimension, we show that, under a behavioral model based on general-
ized reciprocity, the cooperative contributions effectively concentrate to the
dimension where most of their cooperative neighbors are also present. Based
on these observations, we discuss connections to reinforcement learning, in
particular to the model of Roth and Erev [32] and extensions therein [33].

The rest of the paper is organized as follows. In Section 2 we revisit the
concept of generalized reciprocity and discuss the specifics of our state-based
behavioral model. In Section 3 we introduce the stochastic network interac-
tion model, together with its deterministic counterpart. We also introduce
more details about the state-based behavioral update. The exposition in
Section 4 (Results) is organized in 3 subsections. In Section 4.1 we derive
the conditions for the emergence and stability of cooperation with homoge-
neous parameters across the multiplex network dimensions. In Section 4.2
we continue by relaxing this assumption and numerically examine the model
properties with heterogeneous, i.e. nonidentical parameters across the net-
work dimensions. This is done under the assumption of a random, but pre-
determined selection of the interaction dimension (i.e. fixed, predetermined
probability of presence in a certain network dimension). In Section 4.3 we
analyse the cooperation dynamics under a modified rule for the dimension
presence, according to which the individuals are free to adapt the probability
of presence in each of the network dimensions as a function of their payoff
(state-dependent probability of presence). The analysis is performed across
different types of random multiplex networks, with the aim to investigate
the role of the network topology. In Section 4.4 we test the model on an
empirical dataset that describes the relationships between households of 75
Indian Villages (multidimensional networks) [34]. The numerical simulations
on this real-life example support the general conclusion that the multiplex
network structure, combined with an adaptive dimension update rule, en-
hances network cooperation in the scenario with behavioral update based on
generalized reciprocity. Section 5 (Conclusions) summarizes our findings and
discusses possible directions for future work.

2. Background

Generalized reciprocity’s roots lie within the concept of indirect reci-
procity, a rule described as “help someone who is helpful” [35, 36, 13]. In the
literature it can also be found under the terms of “upstream indirect reci-
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procity” [35] and “upstream tit-for-tat” [37]. In biological systems indirect
and generalized reciprocity are essentially two different ideas since the former
requires advanced cognitive capabilities of the involved entities. In particu-
lar, with anonymous interactions, applying indirect reciprocity requires that
each individual keeps tracks of the reputation of all potential co-interacting
partners, whereas generalized reciprocity requires each individual to know
only his own recent history. Due to the complexity, indirect reciprocity has
only been documented in humans [38]. On the other hand, real-life behavior
based on generalized reciprocity has not only been found to be present in hu-
mans [15, 39], but has also been observed in many other organisms, including
rats [14], monkeys [40] and dogs [41].

The theoretical models that have been developed for the purpose of ex-
plaining the innate mechanism behind generalized reciprocity may roughly
be divided into three main groups, though with possible overlaps. The first
group encompasses deterministic behavioral update rules where the individ-
uals base their decisions of whether to cooperate or not solely on the outcome
of their last interaction [42, 43]. The models within the second group address
the scenario where generalized reciprocity emerges as a result of a random
walk in which the altruistic act of one individual initiates a chain (sequence)
of similar acts across the network. Nevertheless, as stated in [37, 44], this
mechanism by itself is not sufficient for the promotion of cooperation unless
other mechanisms such as direct or network reciprocity are already in place.
The models within the third group address a behavioral update rule accord-
ing to which the individual levels of cooperation are adjusted on the basis of
an internal state reflecting the individuals’ general well-being (i.e. fitness).
This adjustment takes place over time as a result of interactions with other
individuals [45, 17].

The specifics of our model are such that it may be categorized as being in
the intersection between the first and the third group. In particular, it shares
the state-based behavioral update with the models from the third group. On
the other hand, by approximating the stochastic interactions by a determin-
istic model, as done in [42], our model is related with the models in the
first group. Nevertheless, differently from the other deterministic approaches
where the strategy choice was assumed to be binary (either fully cooperate or
defect), our model can be placed in a continuous iterated Prisoner dilemma
framework [46, 47], with the note that the choice of the particular strategy
(from the continuous set of possible strategies) in each round is determined
by the individual’s state (reflecting its accumulated payoff, i.e. well-being).
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Compared to the classical (i.e. one-dimensional) random graph model,
the multiplex network structure offers additional degrees of freedom which
render the extension of the one-dimensional models nontrivial. While the
evolution of cooperation in multiplex networks has been addressed in the
context of other types of reciprocity [48, 49, 50], our interaction model and
the state-based behavioral update yield interesting implications on the coop-
erative behavior in these networks. Similar to [17], the accent here is on the
role of the network structure and the thereby related neighborhood impor-
tance index, here generalized to account for the different temporal interaction
model due to the multiplex structure.

3. Model Description

3.1. Network interaction model

We consider a population of N individuals whose relations are modeled
as a connected multiplex network, defined as the triplet G (N , E ,L), where
N (the set of nodes) corresponds to the set of individuals, E ⊆ N ×N is the
set of edges that describes the relationships between pairs of individuals, and
L is the set of L properties that can be attributed to the edges and which
define the dimensions of the network. Formally, a dimension can be defined
as the graph G[l]

(

N , E [l]
)

in which E [l] is the subset of E having the property

l ∈ L. Each dimension is given via an N × N adjacency matrix A[l], where
the ij-th entry A

[l]
ij ∈ {0, 1} between pairs of individuals i, j ∈ N (A

[l]
ij = 1

indicating neighborhood relation, i.e. (i, j) ∈ E [l]).
The interactions between the individuals are modeled as follows: in each

round t, each individual i:

1. randomly chooses a dimension l where it will be present in that round;

2. sends a cooperation request to a randomly (on uniform) chosen indi-

vidual j from its neighborhood in the l-th dimension, j ∈ N [l]
i ;

3. upon selection, if individual j is present in the the l-th dimension
in round t, it receives the request and cooperates with probability
pj(t) representing the individual’s internal cooperative state at round
t; When cooperating, individual j pays a cost c[l] > 0 for individual i
to receive a benefit b[l] > 0.

Given this interaction model, the random payoff of individual i at round t
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may be characterized as

yi(t) =
∑

l

v
[l]
i (t)






b[l]v

[l]
j (t)xj(t)− c[l]xi(t)

∑

k∈N
[l]
i

ρ
[l]
k (t)v

[l]
k (t)






. (1)

In (1), v
[l]
i (t) is the i-th outcome of an L dimensional categorical variable

parametrized by B
[l]
i (t), which itself is a random variable describing the prob-

ability that i is present in layer l in round t. The selected index from the
neighborhood of i is a random variable uniformly distributed on the set N [l]

i ,

j ∼ U(N [l]
i ); xj(t), j = 1, . . . , N , are Bernoulli random variables, each with

parameter pj(t); ρ
[l]
k is a Bernoulli random variable with parameter 1/d

[l]
k ,

where d
[l]
k is the degree of individual k in dimension l, d

[l]
k =

∑

hA
[l]
kh; the

term
∑

k∈N
[l]
i

ρ
[l]
k (t) captures the random number of individuals (neighbors of

i in l) which send a cooperative request to i in dimension l during round t.

3.2. Deterministic approximation

We approximate the stochastic model (1) by a deterministic model in
which the random variables are substituted with their respective expectations

yi(t) =
∑

l

B
[l]
i (t)

[

b[l]
∑

j

A
[l]
ij

d
[l]
i

B
[l]
j (t)pj(t)− c[l]z

[l]
i (t)pi(t)

]

. (2)

The term z
[l]
i (t) in (2) is defined as

z
[l]
i (t) =

∑

j

A
[l]
ji

d
[l]
j

B
[l]
j (t), (3)

is the temporal extension of the neighborhood importance index discussed
in [17], in dimension l. This quantity acts as a local centrality measure of
an individual, with individual i being more “important” in the addressed
dimension if it has many neighbors which are at the same time also present
in that dimension, and the neighbors themselves have few neighbors. In our
model of interactions, this individual would be called upon rather frequently
in the studied dimension.

The motivation to use the deterministic model (2) is that it captures the
long-term behavior of the stochastic model, i.e. provides reliable approxi-
mation of its steady state behavior. Numerical simulations of the stochastic
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model in the long run suggest that the stochastic variables can indeed be ap-
proximated by their respective expectations, without affecting the long-term
network behavior, thus justifying the approximation. In Fig. 1 we display an
example for the deterministic interactions between two individuals that are
placed on a two-dimensional network.

We also define the aggregate time-dependent neighborhood importance
index Zi(t) of individual i as

Zi(t) =

∑

l B
[l]
i (t)z

[l]
i (t)

∑

l B
[l]
i (t)

∑

j

A
[l]
ij

d
[l]
i

B
[l]
j (t)

. (4)

As we will see in more detail in Section 4 (Results), the probability distri-
bution of the quantity Z(t) across the individuals crucially determines the
global cooperative behavior in the network. This quantity, which is a form
of aggregated centrality measure in the multiplex network setting, critically
reflects the role of the network topology on the cooperation dynamics in our
interaction model. We elaborate on this in more detail in Section 4 where we
address multiplex networks generated from Erdos-Renyi (ER) and Barabasi-
Albert (BA) random graph models, as well as a real-world example of a social
network describing relationships between households in Indian villages [34].

With the above, we write (2) in a more compact (vector) form as

y(t) = Θ(t) · p(t),

where Θii(t) = −
∑

l c
[l]B

[l]
i (t)z

[l]
i (t), and Θij(t) =

∑[l] b[l]B
[l]
i (t)

A
[l]
ij

d
[l]
i

B
[l]
j (t), for

i 6= j.

3.3. Behavioral update rule

We study a synchronous update rule, based on the accumulated payoff
of the in i by round t, Yi(t) = Yi(t− 1) + yi(t), with Yi(0) being the initial
condition and yi(0) = 0. The cooperative state of i at round t+ 1 is defined
as

pi(t + 1) = f [Yi(t)] , (5)

where we assume that the function f : R → [0, 1] is increasing. A plausible
choice which reflects real-world behavior is the logistic function

f(ω) =
[

1 + e−k(ω−ω0)
]−1

,
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Figure 1: An example for the deterministic interactions on a two dimensional network
between two individuals i and j (colored in dark blue). For illustrative purposes we
exclude the round notation. Filled colored edges indicate neighborhood relation in the
corresponding dimension, whereas dashed lines are links to the same individual in the
other dimension.

where the parameters k and ω0 define the steepness and the midpoint of the
function.

The justification behind using one state variable for each individual lies
in the fact argued in Section 2, i.e. that generalized reciprocity has been
predominantly found among individuals with lower cognitive capabilities.
Nevertheless, the ability to choose the dimension presence may indirectly
provide the needed flexibility for the individuals to exhibit different cooper-
ation intensities in different dimensions.

Moreover, we point out that it is straightforward to extend the model to
account for an asynchronous behavioral update, where in each step t indi-
vidual i updates its probability of cooperation with probability u. In that
case, however, the steady state cooperative behavior of each individual does
not depend on the choice of u, unlike the case for network reciprocity [51].

4. Results

4.1. Analytical properties of the model

Here we characterize the main properties of the model in steady state.
Hereby, we distinguish between two types of results: 1) results with homo-
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geneous parameters, defined as identical benefit and costs across network
dimensions, b[l] = b and c[l] = c for all l ∈ L; and 2) results with hetero-
geneous parameters, i.e. the more general case when we allow for different
values for the benefits and costs across network dimensions. We remark that
the proofs for the properties follow directly from applying the framework pre-
sented in references [52, 17], nevertheless for concreteness in the exposition
we present them.

The following property holds in general.
1. Robustness to exploitation. In steady state, the individuals may be

attributed to two disjoint sets, W = {w ∈ N : y∗w = 0} and S = {s ∈ N : y∗s > 0},
based on the steady state payoff y∗i . The individuals in S, which we refer to
as “strong individuals”, are characterized by p∗

i = 1, while the individuals in
W, called “weak” may take both values p∗

i = 1 and p∗
i < 1, depending on

the network parameters. Hence, there are two sets of relations that have to
be satisfied

0 =
∑

l

B
[l]∗
i

[

b[l]
∑

j

A
[l]
ij

d
[l]
i

B[l] ∗j p
∗
j − clz

[l]∗
i p∗

i

]

, i ∈ W

y∗i =
∑

l

B
[l]∗
i

[

b[l]∗
∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j p∗

j − c[l]z
[l]∗
i p∗

i

]

, i ∈ S. (6)

Note that the sets W,S, the steady state values p∗
i , i ∈ W and B

[l]∗
j , i ∈

N , l ∈ L and the constants y∗i , i ∈ S are unknown.
Proof: The update rule (5) yields the following set of iterative equations

for i = 1, . . . , N

pi(t + 1) = f (Yi(t− 1) +Θi(t) · p(t)) ,

where Θi(t) is the i−th row of Θ(t). In equilibrium it has to be fulfilled

p∗
i = f

(

f−1 (p∗
i ) +Θ∗

ip
∗
)

,

for i = 1, . . . , N . By applying the inverse map we get

f−1 (p∗
i ) = f−1 (p∗

i ) +Θ∗
ip

∗. (7)

The above requires y∗i
.
= Θ∗

ip
∗ = 0 which further implies p∗

i = 0, unless
either p∗

i = 1 (i.e. Y∗
i = f−1 (p∗

i ) = ∞), or p∗
i = 0 (i.e.Y∗

i = −∞).
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It is easy to verify that if there exists i such that p∗
i = 0, then the same is

true for all i ∈ N . Indeed, when p∗i = 0, then from (2) and since
∑

l B
[l]∗
i = 1,

it must hold that either: 1) y∗i > 0, or: 2) p∗
j = 0 for all j in the neighborhood

of i, j ∈
⋃

l∈LN
[l]
i . The condition 1 implies p∗

i = 1, which is a contradiction.
The condition 2 yields p∗

i = 0 for all i ∈ N by repeating the same argument
to the nodes in the neighborhood of i, until all individuals are reached. We
note that this case is also covered by the requirement Θ∗

ip
∗ = 0, with the

solution p∗ = 0. Hence, an equilibrium fulfills p∗ ∈ 0∪ (0 1]N and is thereby
characterized by non-negative steady state payoffs y∗i ≥ 0. �

The following properties hold only for a multiplex network with homo-
geneous parameters. We relax this assumption in the numerical analysis
performed in the following sections.

2. Existence of cooperation. A necessary condition for existence of
cooperators (individuals with p∗

i > 0) is b/c ≥ 1.
Proof: Note that the total network payoff can be written as

∑

i

y∗i =
∑

l

(

b[l] − c[l]
)

∑

i

B
[l]∗
i z

[l]∗
i p∗

i . (8)

It is easy to show that, b/c < 1 implies p∗
i = 0 for all i ∈ N . Indeed, if there

exists i such that p∗
i > 0, then the total steady state network payoff is strictly

negative, implying that there is some i for which y∗i < 0 (contradiction).
Hence, the necessity of b/c ≥ 1 for existence of cooperation. �

3. Promotion of cooperation. When b/c > 1, we observe the steady
state probabilities are strictly greater than 0, p∗

i > 0 for all i ∈ N .
Proof: By contradiction. If there exists i such that p∗i = 0 then, as already

discussed, it must hold that p∗
i = 0, for all i ∈ N . This, however, would yield

a total network payoff
∑

i y
∗
i = 0, which contradicts (8). �

4. Sufficient condition for existence of strong individuals. When
b/c > 1, there is always at least one strong individual in the network.

Proof: This follows from the observation that when b/c > 1 the right-
hand-side of (8) is strictly greater than zero, which implies that there is at
least one i for which y∗i > 0 and p∗

i = 1. �

5. Necessary condition for the existence of strong individuals.

A necessary condition for existence of strong individuals, (individuals with
p∗
i = 1), is Z∗

i ≤ b/c.
Proof: The proof follows directly by substituting p∗

i = 1 and the fact that

b[l]
∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j ≥ b[l]

∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j p∗

j . �
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6. Full network cooperation. The condition b/c ≥ Z∗
max, where Z∗

max

is the largest neighborhood importance index in the graph, Z∗
max = maxi Z

∗
i ,

is both necessary and sufficient for all individuals to be strong.
Proof: We note that the proof that p∗

i = 1, ∀i ∈ N , implies b/c ≥ Z∗
max,

follows directly from property 3. To prove the converse, we use contradiction.
We first define pmin = inf p∗

i , i ∈ N , and set b/c to be greater than one (since
b/c > 1 is prerequisite for cooperative behavior). Now, let us assume that
the converse is not true, that is b/c ≥ Z∗

i for all i, and there exists some i
such that p∗

i < 1. Under this assumption, for all i ∈ W we would have:

y∗i = b
∑

l

B
[l]∗
i

∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j p∗

j − c
∑

l

B
[l]∗
i z

[l]∗
i p∗

i

≥ b
∑

l

B
[l]∗
i

∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j p∗

j − c
b

c

∑

l

B
[l]∗
i

∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j p∗

i .

Since, if p∗i < 1, y∗i = 0, this implies

p∗
i ≥

∑

l B
[l]∗
i

∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j p∗

j

∑

l B
[l]∗
i

∑

j

A
[l]
ij

d
[l]
i

B
[l]∗
j

≥ pmin. (9)

For all i satisfying b/c > Z∗
i , (9) holds with strict inequality, whereas those

i′ for which b/c = Z∗
i′ must satisfy p∗

i′ = pmin. This, however, can hold if
and only if the individuals corresponding to these indices are only linked to
each other in each dimension and have the same degree in them, i.e. form
a connected component. In that case Z∗

max = 1 = b/c which contradicts the
assumption b/c > 1. Hence, the converse must also be true, which concludes
the proof. �

4.2. The role of heterogeneous parameters

We continue the analysis by relaxing the assumption of homogeneous
parameters, and consider the situation where each dimension l has its own
benefit b[l] and cost c[l]. Since our goal is to examine the effect of hetero-
geneous parameters, we develop a null model in which the probability for
dimension presence is uniform in every round.
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For this case, we compare two different multiplex networks each com-
posed of two dimensions (the results can be easily generalized to networks
with more dimensions). In particular, the first multiplex network type repre-
sents a natural generalization of the Erdos-Renyi (ER) random graph, while
the second is a multiplex version of the Barabasi-Albert (BA) preferential
attachment graph. In an ER random graph an edge between two individuals
has a fixed probability of being present, independently of the other edges.
As a consequence the degree follows a Poisson distribution. On the other
hand, a BA graph is constructed by a dynamical process in which in each
step a new individual is introduced, and this individual makes connections to
other individuals that are already in the graph with probability proportional
to their degree, thus ending up with a power law degree distribution. More
details about the algorithms used for generating these multiplex networks
can be read in references [53, 54, 55].

In what follows, we will consider networks which consist of 100 individu-
als, and where the average degree in each dimension is 8. Since the correla-
tions between the edges in different dimensions should play a prominent role
in determining the steady state level of cooperation we are going to study
three different scenarios. In the ER graph, we will examine the possibility
of overlapping edges, i.e. situations i) when there is no edge overlap in dif-
ferent dimensions, ii) when half of the edges overlap, and iii) when all edges
overlap. In the BA graph we study the cases where the degree correlation
ρ generated through preferential attachment is i) negatively correlated, ii)
there is no correlation, and iii) is positively correlated between the dimen-
sions. Formally we measure the correlation between the degrees in separate
dimensions through the Pearson correlation coefficient, i.e

ρ12 =

∑

i

(

d
[1]
i − 〈d[1]〉

)(

d
[2]
i − 〈d[2]〉

)

√

∑

i

(

d
[1]
i − 〈d[1]〉

)2
√

∑

i

(

d
[2]
i − 〈d[2]〉

)2
. (10)

In equation (10) 〈d[l]〉 denotes the average degree in dimension l.
The results are depicted in Fig. 2. Panels (a)-(b) respectively show the

evolution of the fraction of strong individuals for the multiplex network gen-
erated by the ER and BA multiplex networks while the benefit to cost ratio
in the second dimension, b[2]/c[2] is varied, whereas the benefit to cost ratio
in the first dimension is kept constant (b[1]/c[1] = 1.08). In the case of ER
networks, it can be noticed that full edge overlap is better for the level of

13



1 1.5 2 2.5 3

b[2]/c[2]

0

0.5

1

σ
(a)

No Overlap

Partial Overlap

Full Overlap

1 1.5 2 2.5 3

b[2]/c[2]

0

0.5

1

σ

(b)

Negative Correlation

No Correlation

Positive Correlation

0 1 2 3

Z

0

0.05

0.1

0.15

p Z
(Z

)

(c)

0 1 2 3

Z

0

0.05

0.1

0.15

p Z
(Z

)
(d)

0.9 1
0

0.1

0.2

0.9 1
0

0.1

0.2

Figure 2: (a-b) Fraction of strong individuals σ as a function of the benefit to cost ra-
tio in the second dimension, b[2]/c[2], for a sample of the random graphs that we study,
while b[1]/c[1] = 1.08. (a) ER multiplex networks with uniform update. (b) BA multiplex
networks with uniform update. (c-d) Probability density function for the steady state Z
index for the same random graphs averaged across 1000 realizations and the correspond-
ing one-dimensional graphs (in black). (c) ER multiplex networks. (d) BA multiplex
networks. (c-d) The black curve illustrates the distribution of Z in the one-dimensional
representation of the corresponding random graph. All networks have 100 individuals and
average degree 8.

cooperation displayed when b[2]/c[2] is low (see the inset plot of Fig. 2 (a)),
while no edge overlap promotes more cooperation for higher values of the
benefit to cost ratio in the second dimension. Similarly, positive degree cor-
relation in the BA networks leads to higher fraction of strong individuals for
small benefit to cost ratios(inset plot of Fig. 2 (a)), while negative degree
correlation is better for supporting cooperation when b[2]/c[2] is high.

We point out that due to the uniform probability of dimension update
there is a symmetric relationship between changes in the benefit to cost ratios
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in both dimensions and the fraction of strong individuals, i.e. a change in
b[l]/c[l] in one dimension has the same effect as a change in the other dimen-
sion. Any slight adjustment in the probabilities only changes the symmetry
towards one of the dimensions, which means that the results should not be
gradually altered. Hence, we can use the properties derived in the previous
section as a starting point for the inspection of the results.

This reduces the analysis to studying the steady state distribution of the
index Z. We note that, according to our interaction model, higher values of
the index imply more frequent cooperation requests, and hence, lower incen-
tives for cooperation. For this purpose in panels (c)-(d) of Fig. 2 we plot the
typical probability density function (PDF) for the Z index for the same ran-
dom multiplex networks where the dimension presence is given by a uniform
probability by averaging the index across 1000 network realizations. There,
in black, we also depict the PDF of Z for the one dimensional ER and BA net-
works2. For the ER graphs, it can be seen that the exclusion of overlapping
edges effectively increases the mode of the distribution. Since the average
level of cooperation at the point where cooperation begins to exist is deter-
mined by the left tail of the distribution, the networks with lower modes, and
thus larger left tails, should be able to promote more cooperation. Contrast-
ingly, the fatness of the right tail leads to higher thresholds for displaying
full network cooperation. In a similar fashion, we notice that by decreasing
the correlation between the degrees in the multiplex BA graph, the right tail
of Z decreases, and therefore the lower threshold for full cooperation.

Finally, in the inset plots of Fig. 2 (a)-(b) we observe that the inclusion
of a second dimension leads to significantly lower threshold for existence
of cooperation in the system (which in the one dimensional case is b/c >
1 [17, 52]). This implies that the other dimension acts as a support for
existence of cooperation even if the original dimension does not allow it. This
is a result of the fact that the negative payoffs from the original dimension
are compensated with positive payoffs from the supporting dimension. If at
least one individual receives higher steady state payoff from the supporting
dimension than the loss in the original, then cooperation will persist. This is
an important implication to the emergence of cooperation in systems where
all dimensions of the network can not be observed and the environment is

2Note that the full overlap multiplex ER graph coincides with the one-dimensional
representation.
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not suited for cooperation due to not increasing the social welfare, while the
phenomena is still detected.

4.3. The role of dynamics in the dimension update rule

Predetermined presence is a plausible assumption for systems where the
flow between dimensions is constrained and individuals are not allowed to
develop beliefs about which dimensions generate higher payoffs to them. A
more realistic case would be to allow for dynamics in the probability that
individual i is present in dimension l in round t. While this can be modeled
by introducing Markov transition rates for moving from one dimension to
another, or even adding memory rates to the movement based on the experi-
ence in the previous rounds, here we consider a simpler update rooted in the
same generalized reciprocity rule that was used for the internal state update.

Concretely, we consider an update based on the accumulated payoff in
the dimension,

Y
[l]
i (t) = Y

[l]
i (t− 1) + y

[l]
i (t), (11)

with Y
[l]
i (0) being the initial condition and y

[l]
i (0) = 0. In our model the

updated probability of presence of individual i in dimension l is given by the
softmax function

B
[l]
i (t+ 1) =

exp
(

Y
[l]
i (t)

)

∑

m exp
(

Y
[m]
i (t)

) . (12)

We remark that the described rule is similar in spirit to the famous Roth-Erev
reinforcement learning algorithm for strategies in extensive form games [32].
In fact, based on (11) and (12), an analogy with more general reinforcement
learning models can be established [33, 56]. The connection is provided by
interpreting the act of presence of individual i in dimension l of the multiplex
network as a selection of a strategy Sl (from a set of L preselected strategies),

where the strategy selection is applied with probability B
[l]
i . In this context,

the total payoff Y
[l]
i in the network dimension l is analogous to the propen-

sity to play strategy Sl. We note that the here applied rule (12) is different
from the one introduced in the original Roth-Erev learning model, accord-

ing to which strategy l is selected with probability B
[l]
i (t + 1) =

Y
[l]
i (t)

∑
m Y

[m]
i (t)

.

Specifically, it can be considered as a special case of a more general reinforce-
ment learning scheme in which the probabilities for players to choose certain
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actions are taken from a general Gibbs-Boltzmann distribution

B
[l]
i (t+ 1) =

exp
(

λ · Y[l]
i (t)

)

∑

m exp
(

λ · Y[m]
i (t)

) . (13)

In (13) λ plays the role of “inverse temperature” in statistical physics, and
captures the trade-off between exploitation (λ = ∞), i.e. greedy learning in
which only the action with the highest propensity is taken, and exploration
(λ = 0), meaning that all actions are equally probable. In many reinforce-
ment learning problems, the key is to find a value of λ that achieves a reason-
able trade-off between exploitation and exploration in the model of question.
In our model, the selection of this parameter would critically determine the
transient and evolutionary behavior in the system when, for example, some
dimensions are erased. We expect that in that case selecting the parameter
λ towards the “exploration mode” would provide certain robustness to such
events. The exact quantification of these effects under this scenario, together
with the role of the network topology, is out of the scope of this manuscript.
However, it represents an interesting direction for future work.

The advantage of the suggested update is that it can be very easily imple-
mented since the individual only needs to know the probability B

[l]
i (t) in the

current round for all dimensions and the received payoff y
[l]
i (t) from them.

We point out that the steady state solution of equation (12) is not defined

if more than one Y
[l]
i tends to infinity. This never happens as long as each

individual experiences different dynamics when the dimensions are considered
as separate networks. Another thing worth emphasizing is that the resulting
system has (L− 1)N degrees of freedom, and, hence, complex behavior is
unavoidable. Therefore, in the comparative statics as starting points for the
probability that an individual is present in a certain dimension we consider
real numbers whose values are comparable to the steady state of the preceding
benefit to cost ratios. In the beginning, at the lowest benefit to cost ratios,
the starting point is set to be equal among all individuals and dimensions.

The results for the same networks as in the previous section are shown in
Fig. 3. Panels (a)-(b) depict the fraction of strong individuals as a function of
the benefit to cost ratios. On the one hand, we observe that the global level
of cooperation displayed for low b[2]/c[2] ratios is increased by a large amount
when compared to the predetermined probability for dimension presence. On
the other hand, we notice that for larger benefit to cost ratios, the overall

17



1 1.5 2 2.5 3

b[2]/c[2]

0

0.5

1

σ
(a)

No Overlap

Partial Overlap

Full Overlap

1 1.5 2 2.5 3

b[2]/c[2]

0

0.5

1

σ

(b)

Negative Correlation

No Correlation

Positive Correlation

1 1.5 2 2.5 3

b[2]/c[2]

0

0.5

1

〈B
[l
] 〉
i

(c)

1 1.5 2 2.5 3

b[2]/c[2]

0

0.5

1
〈B

[l
] 〉
i

(d)

Figure 3: (a-b) Fraction of strong individuals σ as a function of the benefit to cost ratio
in the second dimension, b[2]/c[2], for a sample of the random graphs that we study, while
b[1]/c[1] = 1.08. (a) ER multiplex network with generalized reciprocity update. (b) BA
multiplex network with generalized reciprocity update. (c-d) For the same graphs, the
fraction of individuals 〈B[l]∗〉 which in the steady state are present in the first dimension.

level of displayed cooperation is not consistent in terms of performance. More
precisely, there are situations in which it is decreased (e.g. the no-overlap ER
network), and there are situations in which it is increased (e.g. the positive
correlation BA network) when compared to predetermined presence.

This aggregate behavior can be explained by looking at (c)-(d) of Fig. 3,
where we display the fraction of individuals which in steady state are present
in the first dimension as a function of the same parameters. Obviously, the
dimension in which the individuals are always present in steady state is not
always the same, i.e. it is dispersed among the individuals depending on the
network topology and parameters. This is a key feature of the model since it
implies that the dimension update rule forces the individuals to accommodate
their presence towards the dimension where they either carry the smallest
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burden to cooperate or where most of their cooperative neighbors are present.
As such, when coupled with the generalized reciprocity state update rule
(5), the dimension update rule facilitates the promotion of cooperation in
the system (in the sense that it promotes the existence of individuals with
p∗
i > 0).
It is worth mentioning that the fact that individuals may accommodate

their presence to the dimension where most of their cooperative neighbors are
present indicates that full unconditional cooperation is not guaranteed to be
achieved in an easier fashion. In particular, the dimension update rule may
force an individual in steady state to be present in a dimension which is less
suited for its personal gain than some predetermined rule just because most
of the other individuals are present in that dimension. Exactly this may be
the cause for the lower level of cooperation exhibited in the no-overlap ER
network. Due to the manner in which the edges are constructed in this graph,
it may happen that some individuals to have high neighborhood importance
index in the first dimension but low in the other. For these individuals, a
uniform predetermined rule would imply that they would be able to generate
a higher payoff by interacting in the dimension where they are less burdened.
However, none of their neighbors with lower value of Z would be better
of if they are present in it due to lower benefit to cost ratio and, more
importantly, due to being less forced to answer to a cooperation request. As
a consequence, these group of individuals accommodate their presence in the
second dimension, and the individuals with high neighborhood importance
index in it are also forced to be present in it.

4.4. Real-world examples

As a means to provide an intuitive example for the experimental applica-
tion of the model we utilize social network data that describes relationships
between households in Indian Villages [34]. In this dataset there are a total
of 75 villages (networks) each represented through 12 separate dimensions.
Since, there is a significant overlap in the way the separate dimensions are
constructed (see [34] for a detailed description), here we consider only 4 di-
mensions that describe essentially disparate types of social interactions. In
the first dimension, the links represent relationships between households who
help each other with making decision, the second and third, respectively, de-
scribe the borrowing interactions of money and kerosene and rice. Finally,
the fourth dimension are the medical advice relations.
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For estimation purposes, we exclude households that have no neighbors in
at least one of the studied dimensions. Thus we end up studying 75 different
multiplex networks each consisting of 4 dimensions and on average 126.45
individuals (with a standard deviation of 43.59). More detailed summary
statistics are given in Table 1.

Table 1: Villages networks summary statistics

Dimension Avg. degree Med. degree Avg. clustering Avg. path

Help with Decision 3.21 (0.48) 2.70 (0.56) 0.16 (0.06) 4.35 (1.28)
Borrow money 3.76 (0.73) 3.35 (0.78) 0.21 (0.06) 4.14 (1.22)
Borrow rice and kerosene 4.26 (0.71) 3.69 (0.69) 0.19 (0.07) 3.76 (0.84)
Give medical advice 3.82 (0.68) 3.48 (0.72) 0.26 (0.05) 4.46 (1.32)

Note: Standard deviations in brackets.

For easier interpretation of the results, in the numerical estimations we
set homogeneous benefits and costs. In Fig. 4 panel (a) we plot the aver-
age fraction of strong individuals as a function of the benefit and cost ratio
b/c across all multiplex networks with and without the dimension update
rule. There, we also depict the same variable when each dimension is con-
sidered as a separate network. In general, we observe that the dynamics of
the examples in which the dimension update rule is at force supports most
cooperation, followed by the uniform update rule. In this particular example,
the individual dimensions behave as worst promoters of cooperation based
on generalized reciprocity.

Similar to the previous results, these are also best explained if we look
at the steady state distribution of the index Z (panel (b) of Fig. 4). In
particular, it can be seen that the average distribution for Z in the multiplex
network with dimension update rule has tails that are less fat than the other
example structures. Clearly, this is a result of the individuals being able to
accommodate to the dimension where they receive highest payoff, differently
from the other structures that are compared. As evidenced in panel (c) of
Fig. 4, where we show the average steady state probability for dimension
presence (averaged across individuals and estimations), in steady state the
individual presence distribution for the dimensions is well diversified. While
most of the individuals choose to be present in the Medical advice dimension,
there are some individuals that favor the other dimensions. Consequently,
the mass of the distribution of Z is driven towards one. In other words,
Property 5. is easily satisfied for most individuals solely by assuming b/c > 1
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and Property 6. is reached with lower b/c ratio. On the other hand, all other
distributions exhibit fatter tails, and hence require higher benefit to cost
ratio in order for full cooperation to appear. This is especially true for the
help with a decision dimension when it is considered as a separate network.
Evidently, in it there is a small group of individuals that receive cooperation
requests way more often than they send. The fat tail of Z in the help with a
decision dimension can be a direct result of the fact that this dimension has
on average the lowest clustering coefficient. Concretely, many of the possible
triads of edges are not formed, which in turn leads to excessive burden to a
particular group of individuals for which the edges in the possible triad exist.

As a final remark, we state that the individuals in the investigated sys-
tem are groups of humans and as such are probably able to develop higher
cognitive senses for competition and cooperation than simply following a gen-
eralized reciprocity rule. Nevertheless, this does not reduce the significance
of the results since they serve as a demonstration that the inclusion of mul-
tiple dimensions together with the update rule can guide a real-life system
to a higher level of cooperation.

5. Conclusions

The emergence of cooperation in complex networks precludes the exis-
tence of a specific behavioral mechanism and a particular network interac-
tion structure [57]. This interaction structure often exhibits multidimensional
features such as relationships of different types or temporal dynamics.

Against this background, we studied the cooperation dynamics under a
behavioral mechanism based on generalized reciprocity, in a network consist-
ing of multiple dimensions, each modeled by a random graph. The model,
which is a generalization of the one introduced in [17], provides new insights
on the role of the network structure on the promotion of cooperation in
complex multidimensional networks. In particular, we demonstrated that a
multidimensional structure may support cooperation within the individual
network dimensions, even when the benefit-to-cost ratio in the considered
dimensions is below the threshold required for cooperation (when observed
in isolation). This observation may explain the existence of cooperation in
systems where cooperative behavior is observed even though it does not in-
crease social welfare – a latent structure (i.e. other dimensions) may exist
that acts as a support to the observed dynamics.
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Figure 4: (a) Average fraction of unconditional cooperators σ as a function of b/c for the
multiplex networks with dimension update rule (black), with uniform update (red), and
for the individual networks: help with a decision (blue), borrow money (green), borrow
rice and kerosene (magenta) and give medical advice (yellow). The dashed vertical line
indicates the threshold for full network cooperation in the update rule case. (b) Average
distribution of the index Z for the networks. The illustrated distribution for the networks
in which the dimension update rule is at force is estimated with the steady state proba-
bilities averaged across estimations. (c) Average fraction of steady state presence 〈B∗〉i
when there is a generalized reciprocity update rule for it.

We also discussed the connection between the studied behavioral mecha-
nism in the multidimensional network and reinforcement learning, by inter-
preting the act of presence of individuals in the dimensions of the multiplex
network as a selection of a strategy (from a predefined set of strategies), where
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the strategy selection is applied in relation to individuals’ internal state. In
this context, we introduced a simple and intuitive rule for modeling the in-
dividuals’ interactions in the different dimensions (i.e. their presence across
dimensions). The experiments were performed both on an multidimensional
extension of the random graph models, and on a real-life dataset. As a gen-
eral observation, the cooperative contributions of the individual individuals
concentrate in the dimension which is most favorable for the existence of
cooperation.

An interesting direction for future work is the study of more general
behavioral mechanisms in the spirit of the “exploration vs. exploitation”
discussion in reinforcement learning. In this context, it will be valuable to
study not only the steady-state (in the sense of evolutionary behavior), but
also the transient dynamics in the network. Another fruitful topic is gen-
eralizing the multiplex model to other truly cooperative games that cannot
be sustained in absence of other behavioral mechanism. As a final note, the
model can also be used as a starting point in the examination of network
formation based on generalized reciprocity, where the neighborhood of each
individual in each dimension can be seen as the possible final outcome of a
rewiring process that is determined by the dimension update rule.

Acknowledgement

This research was supported in part by DFG through grant “Random
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