Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/9484
DC FieldValueLanguage
dc.contributor.authorDojchinovski, Dimitrien_US
dc.contributor.authorGushev, Marjanen_US
dc.date.accessioned2020-11-09T07:50:59Z-
dc.date.available2020-11-09T07:50:59Z-
dc.date.issued2020-09-24-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/9484-
dc.description.abstractThe application of Machine Learning, in recent times, has ex- celled with positive outcome in many fields, including the medical field, such as handling cardiovascular problems. In this paper, we aim at de- veloping a machine learning algorithm for detecting Atrial Fibrillation, as one of the most common and mortal types of heart rhythm prob- lems - arrhythmias. Especially we address the research question of which dataset to be used in the learning process to reveal optimal results. The experiments are conducted using the following algorithms: Support Vec- tor Machines, Decision Trees and Random Forest training validating and testing on specific selection of the three most popular publicly available electrocardiogram databases that contain episodes of Atrial Fibrillation. The research concluded that the best results are obtained by the Random Forest algorithm trained on LTAFDB selected by the 80-10-10 rule for training, validation and testing.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesISSN 1857-7288;-
dc.subjectAtrial fibrillation, Machine learning, ECG, Physioneten_US
dc.titleSelecting an Optimal Training Dataset for Machine Learning based Atrial Fibrillation Detectionen_US
dc.typeProceedingsen_US
dc.relation.conferenceICT Innovations 2020en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Прикажи едноставен запис

Page view(s)

285
Last Week
1
Last month
checked on 4.5.2025

Download(s)

151
checked on 4.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.