Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/8900
DC FieldValueLanguage
dc.contributor.authorSimjanoska, Monikaen_US
dc.contributor.authorGjoreski, Martinen_US
dc.contributor.authorGams, Matjažen_US
dc.contributor.authorMadevska Bogdanova, Anaen_US
dc.date.accessioned2020-09-05T15:03:27Z-
dc.date.available2020-09-05T15:03:27Z-
dc.date.issued2018-04-11-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/8900-
dc.description.abstractBlood pressure (BP) measurements have been used widely in clinical and private environments. Recently, the use of ECG monitors has proliferated; however, they are not enabled with BP estimation. We have developed a method for BP estimation using only electrocardiogram (ECG) signals.en_US
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofSensors (Basel, Switzerland)en_US
dc.titleNon-Invasive Blood Pressure Estimation from ECG Using Machine Learning Techniquesen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s18041160-
dc.identifier.urlhttp://www.mdpi.com/1424-8220/18/4/1160/pdf-
dc.identifier.volume18-
dc.identifier.issue4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Files in This Item:
File Опис SizeFormat 
sensors-18-01160 (1).pdf1.11 MBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

225
checked on 20.7.2025

Download(s)

27
checked on 20.7.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.