Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/8768
DC FieldValueLanguage
dc.contributor.authorGushev, Marjanen_US
dc.contributor.authorPoposka, Lidijaen_US
dc.contributor.authorSpasevski, Gjokoen_US
dc.contributor.authorKostoska, Magdalenaen_US
dc.contributor.authorKoteska, Bojanaen_US
dc.contributor.authorSimjanoska, Monikaen_US
dc.contributor.authorAckovska, Nevenaen_US
dc.contributor.authorStojmenski, Aleksandaren_US
dc.contributor.authorTasic, Jurijen_US
dc.contributor.authorTrontelj, Janezen_US
dc.date.accessioned2020-08-14T15:42:25Z-
dc.date.available2020-08-14T15:42:25Z-
dc.date.issued2020-01-06-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/8768-
dc.description.abstractDiabetes is one of today’s greatest global problems, and it is only becoming bigger. Constant measuring of blood glucose level is a prerequisite for monitoring glucose blood level and establishing diabetes treatment procedures. The usual way of glucose level measuring is by an invasive procedure that requires finger pricking with the lancet and might become painful and obeying, especially if this becomes a daily routine. In this study, we analyze noninvasive glucose measurement approaches and present several classification dimensions according to different criteria: size, invasiveness, analyzed media, sensing properties, applied method, activation type, response delay, measurement duration, and access to results. We set the focus on using machine learning and neural network methods and correlation with heart rate variability and electrocardiogram, as a new research and development trend.en_US
dc.publisherHindawi Limiteden_US
dc.relation.ispartofJournal of Sensorsen_US
dc.titleNoninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variabilityen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1155/2020/9628281-
dc.identifier.urlhttp://downloads.hindawi.com/journals/js/2020/9628281.pdf-
dc.identifier.urlhttp://downloads.hindawi.com/journals/js/2020/9628281.xml-
dc.identifier.urlhttp://downloads.hindawi.com/journals/js/2020/9628281.pdf-
dc.identifier.volume2020-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Medicine-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Прикажи едноставен запис

Page view(s)

162
checked on 4.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.