Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/34028
DC FieldValueLanguage
dc.contributor.authorDobreva, Jovanaen_US
dc.contributor.authorKarasmanakis, Ivanaen_US
dc.contributor.authorIvanisevic, Filipen_US
dc.contributor.authorHorvat, Tadejen_US
dc.contributor.authorGams, Matjazen_US
dc.contributor.authorMishev, Kostadinen_US
dc.contributor.authorSimjanoska Misheva, Monikaen_US
dc.date.accessioned2025-09-11T08:00:36Z-
dc.date.available2025-09-11T08:00:36Z-
dc.date.issued2025-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/34028-
dc.description.abstractThe paper introduces RAGCare-QA, an extensive dataset of 420 theoretical medical knowledge questions for assessing Retrieval-Augmented Generation (RAG) pipelines in medical education and evaluation settings. The dataset includes one-choice-only questions from six medical specialties (Cardiology, Endocrinology, Gastroenterology, Family Medicine, Oncology, and Neurology) with three levels of complexity (Basic, Intermediate, and Advanced). Each question is accompanied by the best fit of RAG implementation complexity level, such as Basic RAG (315 questions, 75.0%), Multi-vector RAG (82 questions, 19.5%), and Graph-enhanced RAG (23 questions, 5.5%). The questions emphasize theoretical medical knowledge on fundamental concepts, pathophysiology, diagnostic criteria, and treatment principles important in medical education. The dataset is a useful tool for the assessment of RAG- based medical education systems, allowing researchers to fine-tune retrieval methods for various categories of theoretical medical knowledge questions.en_US
dc.publisherCold Spring Harbor Laboratory Pressen_US
dc.relation.ispartofmedRxiven_US
dc.subjectMedical Education, Knowledge Assessment; Retrieval Augmented Generation; Mul>ple Choice ,Ques>ons; Medical Knowledge Base; Healthcare AI; Theore>cal Medicineen_US
dc.titleRAGCare-QA: A Benchmark Dataset for Evaluating Retrieval-Augmented Generation Pipelines in Theoretical Medical Knowledgeen_US
dc.typeJournal Articleen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Files in This Item:
File SizeFormat 
2025.08.15.25333718.full.pdf3.09 MBAdobe PDFView/Open
Прикажи едноставен запис

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.