Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/34012
DC FieldValueLanguage
dc.contributor.authorGobbetti, Alessandroen_US
dc.contributor.authorGjoreski, Martinen_US
dc.contributor.authorGjoreski, Hristijanen_US
dc.contributor.authorLane, Nicholasen_US
dc.contributor.authorLangheinrich, Marcen_US
dc.date.accessioned2025-09-04T07:23:45Z-
dc.date.available2025-09-04T07:23:45Z-
dc.date.issued2024-10-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/34012-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofIEEE Pervasive Computingen_US
dc.titleFedMMA-HAR: Federated Learning for Human Activity Recognition With Missing Modalities Using Head-Worn Wearablesen_US
dc.identifier.doi10.1109/mprv.2024.3475473-
dc.identifier.urlhttp://xplorestaging.ieee.org/ielx8/7756/10859196/10729612.pdf?arnumber=10729612-
dc.identifier.volume23-
dc.identifier.issue4-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles
Прикажи едноставен запис

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.