Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/33946
DC FieldValueLanguage
dc.contributor.authorGromann, Dagmaren_US
dc.contributor.authorGonçalo Oliveira, Hugoen_US
dc.contributor.authorPitarch, Luciaen_US
dc.contributor.authorApostol, Elena-Simonaen_US
dc.contributor.authorBernad, Jordien_US
dc.contributor.authorBytyçi, Elioten_US
dc.contributor.authorCantone, Chiaraen_US
dc.contributor.authorCarvalho, Saraen_US
dc.contributor.authorFrontini, Francescaen_US
dc.contributor.authorGarabík, Radovanen_US
dc.contributor.authorGracia, Jorgeen_US
dc.contributor.authorGranata, Letiziaen_US
dc.contributor.authorFahad Khan, Anasen_US
dc.contributor.authorKnez, Timotejen_US
dc.contributor.authorLabropoulou, Pennyen_US
dc.contributor.authorLiebeskind, Chayaen_US
dc.contributor.authorDi Buono, Maria Piaen_US
dc.contributor.authorOstroški Anić, Anaen_US
dc.contributor.authorRackevičienė, Sigitaen_US
dc.contributor.authorRodrigues, Ricardoen_US
dc.contributor.authorSérasset, Gillesen_US
dc.contributor.authorSelmistraitis, Linasen_US
dc.contributor.authorSidibé, Mahammadouen_US
dc.contributor.authorSilvano, Purificaçãoen_US
dc.contributor.authorSpahiu, Blerinaen_US
dc.contributor.authorSogutlu, Enriketaen_US
dc.contributor.authorStanković, Rankaen_US
dc.contributor.authorTruica, Ciprian-Octavianen_US
dc.contributor.authorValūnaitė Oleškevičienė, Giedrėen_US
dc.contributor.authorZitnik, Slavkoen_US
dc.contributor.authorZdravkova, Katerinaen_US
dc.date.accessioned2025-08-25T07:40:28Z-
dc.date.available2025-08-25T07:40:28Z-
dc.date.issued2024-05-22-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33946-
dc.description.abstractUnderstanding the relation between the meanings of words is an important part of comprehending natural language. Prior work has either focused on analysing lexical semantic relations in word embeddings or probing pretrained language models (PLMs), with some exceptions. Given the rarity of highly multilingual benchmarks, it is unclear to what extent PLMs capture relational knowledge and are able to transfer it across languages. To start addressing this question, we propose MultiLexBATS, a multilingual parallel dataset of lexical semantic relations adapted from BATS in 15 languages including low-resource languages, such as Bambara, Lithuanian, and Albanian. As experiment on cross-lingual transfer of relational knowledge, we test the PLMs’ ability to (1) capture analogies across languages, and (2) predict translation targets. We find considerable differences across relation types and languages with a clear preference for hypernymy and antonymy as well as romance languages.en_US
dc.subjectLexical Semantic Relations, Multilingual Benchmark, BATSen_US
dc.titleMultiLexBATS: Multilingual Dataset of Lexical Semantic Relationsen_US
dc.typeProceedingsen_US
dc.relation.conferenceProceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Files in This Item:
File SizeFormat 
2475_Paper.pdf228.37 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.