Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33587
DC FieldValueLanguage
dc.contributor.authorSpasev, Vlatkoen_US
dc.contributor.authorDimitrovski, Ivicaen_US
dc.contributor.authorChorbev, Ivanen_US
dc.contributor.authorKitanovski, Ivanen_US
dc.date.accessioned2025-05-21T07:45:27Z-
dc.date.available2025-05-21T07:45:27Z-
dc.date.issued2024-10-01-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33587-
dc.description.abstractThe escalating use of Unmanned Aerial Vehicles (UAVs) as remote sensing platforms has garnered considerable attention, proving invaluable for ground object recognition. While satellite remote sensing images face limitations in resolution and weather susceptibility, UAV remote sensing, em ploying low-speed unmanned aircraft, offers enhanced object resolution and agility. The advent of advanced machine learning techniques has propelled significant strides in image analysis, particularly in semantic segmentation for UAV remote sensing images. This paper evaluates the effectiveness and efficiency of SegFormer, a semantic segmentation framework, for the semantic segmentation of UAV images. SegFormer variants, ranging from real-time (B0) to high-performance (B5) models, are assessed using the UAVid dataset tailored for semantic segmentation tasks. The research details the architecture and training procedures specific to SegFormer in the context of UAV semantic segmenta tion. Experimental results showcase the model’s performance on benchmark dataset, highlighting its ability to accurately delineate objects and land cover features in diverse UAV scenarios, leading to both high efficiency and performance.en_US
dc.relation.ispartofarXiv preprint arXiv:2410.01092en_US
dc.subjectSemantic segmentation · Deep learning · SegFormer · UAV images.en_US
dc.titleSemantic Segmentation of Unmanned Aerial Vehicle Remote Sensing Images using SegFormeren_US
dc.typePreprinten_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Journal Articles
Files in This Item:
File SizeFormat 
2410.01092v1.pdf976.25 kBAdobe PDFView/Open
Прикажи едноставен запис

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.