Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33559
DC FieldValueLanguage
dc.contributor.authorPetruševski, Mirkoen_US
dc.contributor.authorŠkrekovski, Risteen_US
dc.date.accessioned2025-05-15T13:24:47Z-
dc.date.available2025-05-15T13:24:47Z-
dc.date.issued2024-03-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33559-
dc.description.abstractUnder a given edge-coloring of a (multi)graph $G$, an edge is said to be rich if there is no color repetition among its neighboring edges; e.g., any isolated edge is rich. A rich-neighbor coloring of $G$ is a proper edge-coloring such that every non-isolated edge has at least one rich neighbor. For this weaker variant of strong edge-colorings, we believe that every connected subcubic graph apart form $K_4$ admits a rich-neighbor 5-coloring. In support of this, we show that every subcubic graph admits a rich-neighbor 7-coloring. The paper concludes with few open problems for subcubic graphs concerning the analogous notions of normal-neighbor colorings and poor-neighbor colorings.en_US
dc.language.isoen_USen_US
dc.publisherElsevier BVen_US
dc.relation.ispartofDiscrete Mathematicsen_US
dc.subjectproper edge-coloring, rich edge, neighbor, subcubic graph, strong edge-coloringen_US
dc.titleProper edge-colorings with a rich neighbor requirementen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2023.113803-
dc.identifier.urlhttps://api.elsevier.com/content/article/PII:S0012365X23004892?httpAccept=text/xml-
dc.identifier.urlhttps://api.elsevier.com/content/article/PII:S0012365X23004892?httpAccept=text/plain-
dc.identifier.volume347-
dc.identifier.issue3-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Faculty of Mechanical Engineering: Journal Articles
Прикажи едноставен запис

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.