Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/33559
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Petruševski, Mirko | en_US |
dc.contributor.author | Škrekovski, Riste | en_US |
dc.date.accessioned | 2025-05-15T13:24:47Z | - |
dc.date.available | 2025-05-15T13:24:47Z | - |
dc.date.issued | 2024-03 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/33559 | - |
dc.description.abstract | Under a given edge-coloring of a (multi)graph $G$, an edge is said to be rich if there is no color repetition among its neighboring edges; e.g., any isolated edge is rich. A rich-neighbor coloring of $G$ is a proper edge-coloring such that every non-isolated edge has at least one rich neighbor. For this weaker variant of strong edge-colorings, we believe that every connected subcubic graph apart form $K_4$ admits a rich-neighbor 5-coloring. In support of this, we show that every subcubic graph admits a rich-neighbor 7-coloring. The paper concludes with few open problems for subcubic graphs concerning the analogous notions of normal-neighbor colorings and poor-neighbor colorings. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Elsevier BV | en_US |
dc.relation.ispartof | Discrete Mathematics | en_US |
dc.subject | proper edge-coloring, rich edge, neighbor, subcubic graph, strong edge-coloring | en_US |
dc.title | Proper edge-colorings with a rich neighbor requirement | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2023.113803 | - |
dc.identifier.url | https://api.elsevier.com/content/article/PII:S0012365X23004892?httpAccept=text/xml | - |
dc.identifier.url | https://api.elsevier.com/content/article/PII:S0012365X23004892?httpAccept=text/plain | - |
dc.identifier.volume | 347 | - |
dc.identifier.issue | 3 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Appears in Collections: | Faculty of Mechanical Engineering: Journal Articles |
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.