Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33296
DC FieldValueLanguage
dc.contributor.authorPetrovikj, Nenaden_US
dc.contributor.authorMishkovska, Bojanaen_US
dc.contributor.authorKoteska, Bojanaen_US
dc.contributor.authorMadevska Bogdanova, Anaen_US
dc.date.accessioned2025-04-23T18:39:44Z-
dc.date.available2025-04-23T18:39:44Z-
dc.date.issued2025-04-23-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33296-
dc.description.abstractPhotoplethysmogram (PPG) signals are pivotal in cardiovascular monitoring, offering real-time insights into heart rate and oxygen saturation (SpO2). This study explores the creation of deep learning and machine learning models - specifically Convolutional Neural Networks (CNNs), Bidirectional Long Short-Term Memory (BiLSTM) networks, Recurrent Neural Networks (RNNs), and Random Forest Regressors (RFRs)-to estimate SpO2 levels from single-channel PPG data. Another point is developing algorithms for using the data sourced from the PhysioNet MIMIC-III database. The patients used for training and testing are distinct, ensuring no overlap between the datasets and enabling rigorous model evaluation. A comprehensive analyses reveal that LSTM-based model achieve significant accuracy in SpO2 estimation, with R-squared value reaching up to 0.59. Specifically, the LSTM model demonstrated an MAE of 1.26, MSE of 3.11 and RMSE of 1.76. These results demonstrate the potential of machine learning techniques in advancing clinical monitoring and decision-making processes within critical care environments, thereby enhancing patient care outcomes.en_US
dc.language.isoen_USen_US
dc.publisherSpringer, Chamen_US
dc.relationNATO Science for Peace and Security Program under project SP4LIFE, number G5825en_US
dc.relation.ispartofseries2436;-
dc.subjectOxygen Saturation (SpO2)en_US
dc.subjectMachine Learningen_US
dc.subjectLSTMen_US
dc.subjectPhotoplethysmogramen_US
dc.titleBlood Oxygen Saturation Estimation Using PPG Signals from the MIMIC-III Databaseen_US
dc.typeProceeding articleen_US
dc.relation.conferenceICT Innovations 2024. TechConvergence: AI, Business, and Startup Synergyen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-031-86162-8_14-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Прикажи едноставен запис

Page view(s)

15
checked on 3.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.