Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/33213
DC FieldValueLanguage
dc.contributor.authorNikolovski, Filipen_US
dc.contributor.authorStojkovska, Irenaen_US
dc.date.accessioned2025-04-08T14:28:58Z-
dc.date.available2025-04-08T14:28:58Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33213-
dc.description.abstractOptimization in noisy environments arises frequently in applications. Solving this problem quickly, efficiently, and accurately is therefore of great importance. The stochastic gradient descent (SGD) method has proven to be a fundamental and an effective tool which is flexible enough to allow modifications for improving its convergence properties. In this paper we propose a new algorithm for solving an unconstrained optimization problems in noisy environments which combines the SGD with a modified momentum term using a twopoint step size estimation in the Barzilai-Borwein (BB) framework. We perform a high probability analysis for the proposed algorithm and we establish its convergence under the standard assumptions. Numerical experiments demonstrate a promising behavior of the proposed method compared to the "vanilla" SGD with momentum in noise-free and in noisy environment when the objective function is scaled.en_US
dc.language.isoenen_US
dc.publisherMatematichki Bilten, Union of Mathematicians of Macedoniaen_US
dc.relationNIP.UKIM.20-21.6en_US
dc.relation.ispartofМатематички билтен/BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINEen_US
dc.subjectnumerical optimization, stochastic gradient method, Barzilai-Borwein method, momentum method, scale invariance, high probablity convergenceen_US
dc.titleSCALE INVARIANT STOCHASTIC GRADIENT METHOD WITH MOMENTUMen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.37560/matbil23472147n-
dc.identifier.volume47-
dc.identifier.issue2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFaculty of Natural Sciences and Mathematics-
Appears in Collections:Faculty of Natural Sciences and Mathematics, Institute of Mathematics: Journal Articles
Files in This Item:
File SizeFormat 
mat-bilten-nikolovski-stojkovska-2023-47-no2 (2).pdf224.38 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

34
checked on 3.5.2025

Download(s)

1
checked on 3.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.