Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/33115
DC FieldValueLanguage
dc.contributor.authorChanda, Tirthaen_US
dc.contributor.authorHauser, Katjaen_US
dc.contributor.authorHobelsberger, Sarahen_US
dc.contributor.authorBucher, Tabea-Claraen_US
dc.contributor.authorGarcia, Carina Nogueiraen_US
dc.contributor.authorWies, Christophen_US
dc.contributor.authorKittler, Haralden_US
dc.contributor.authorTschandl, Philippen_US
dc.contributor.authorNavarrete-Dechent, Cristianen_US
dc.contributor.authorPodlipnik, Sebastianen_US
dc.contributor.authorChousakos, Emmanouilen_US
dc.contributor.authorCrnaric, Ivaen_US
dc.contributor.authorMajstorovic, Jovanaen_US
dc.contributor.authorAlhajwan, Lindaen_US
dc.contributor.authorForeman, Tanyaen_US
dc.contributor.authorPeternel, Sandraen_US
dc.contributor.authorSarap, Sergeien_US
dc.contributor.authorÖzdemir, İremen_US
dc.contributor.authorBarnhill, Raymond Len_US
dc.contributor.authorLlamas-Velasco, Maren_US
dc.contributor.authorPoch, Gabrielaen_US
dc.contributor.authorKorsing, Sörenen_US
dc.contributor.authorSondermann, Wiebkeen_US
dc.contributor.authorGellrich, Frank Friedrichen_US
dc.contributor.authorHeppt, Markus Ven_US
dc.contributor.authorErdmann, Michaelen_US
dc.contributor.authorHaferkamp, Sebastianen_US
dc.contributor.authorDrexler, Konstantinen_US
dc.contributor.authorGoebeler, Matthiasen_US
dc.contributor.authorSchilling, Bastianen_US
dc.contributor.authorUtikal, Jochen Sen_US
dc.contributor.authorGhoreschi, Kamranen_US
dc.contributor.authorFröhling, Stefanen_US
dc.contributor.authorKrieghoff-Henning, Evaen_US
dc.contributor.authorBrinker, Titus Jen_US
dc.contributor.authorCollaboratorsen_US
dc.contributor.authorSotirovski, Tomicaen_US
dc.contributor.authorSimeonovski, Viktoren_US
dc.contributor.authorZafirovikj, Zoricaen_US
dc.date.accessioned2025-03-24T11:44:34Z-
dc.date.available2025-03-24T11:44:34Z-
dc.date.issued2024-01-15-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/33115-
dc.description.abstractArtificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists' decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists' diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists' confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists' willingness to adopt such XAI systems, promoting future use in the clinic.en_US
dc.language.isoenen_US
dc.publisherSpringer Nature Limiteden_US
dc.relation.ispartofNature communicationsen_US
dc.titleDermatologist-like explainable AI enhances trust and confidence in diagnosing melanomaen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41467-023-43095-4-
dc.identifier.volume15-
dc.identifier.issue1-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Faculty of Medicine: Journal Articles
Show simple item record

Page view(s)

22
checked on May 3, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.