Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/31518
Title: PROPRETIES OF THE K-TH UPPER ORDER STATISTICS PROCESS THROUGH AN EXAMPLE
Authors: Aneta Gacovska-Barandovska
Keywords: Upper order statistic, fixed rank, central rank, regular norming sequence, random sample size, time-space changes.
Issue Date: 2019
Publisher: Union of Mathematicians of Macedonia
Source: Aneta Gacovska-Barandovska, PROPRETIES OF THE K-TH UPPER ORDER STATISTICS PROCESS THROUGH AN EXAMPLE, Mat.Bilten, 43 (LXIX) 2, , p.61-72, (2019).
Journal: Математички билтен / Matematichki bilten / BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINE
Series/Report no.: 43;2
Abstract: The author has previously considered the asymptotic be havior of upper order statistics with central rank of a sample with deterministic size and of randomly indexed upper order statistics. In this paper, by using regular norming time-space changes, a theoretical example has been constructed in order to illustrate some of the ob tained properties of the k-th upper order statistics process.
URI: http://hdl.handle.net/20.500.12188/31518
DOI: 10.37560/matbil2190061gb
Appears in Collections:Faculty of Natural Sciences and Mathematics, Institute of Mathematics: Journal Articles

Files in This Item:
File SizeFormat 
43-69-2-2019-61-72.pdf438.94 kBAdobe PDFView/Open
Show full item record

Page view(s)

9
checked on Nov 7, 2024

Download(s)

1
checked on Nov 7, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.