Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/30824
DC FieldValueLanguage
dc.contributor.authorCholakoska, Anaen_US
dc.contributor.authorGjoreski, Hristijanen_US
dc.contributor.authorRakovic, Valentinen_US
dc.contributor.authorDenkovski, Danielen_US
dc.contributor.authorKalendar, Marijaen_US
dc.contributor.authorPfitzner, Bjarneen_US
dc.contributor.authorArnrich, Berten_US
dc.date.accessioned2024-06-27T12:58:24Z-
dc.date.available2024-06-27T12:58:24Z-
dc.date.issued2023-07-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/30824-
dc.description.abstractGiven the Internet of Things’ rapid expansion and widespread adoption, it is of great concern to establish secure interaction between devices without worsening the quality of their performance. The use of machine learning techniques has been shown to improve detection of anomalous behavior in these types of networks, but their implementation leads to poor performance and compromised privacy. To better address these shortcomings, federated learning (FL) has been introduced. FL enables devices to collaboratively train and evaluate a shared model while keeping personal data on site (e.g., smart homes, intensive care units, hospitals, and so on), thus minimizing the possibility of an attack and fostering real-time distribution of models and learning. This article investigates the performance of FL in comparison to deep learning (DL) with respect to network intrusion detection in ambient assisted living environments. The results demonstrate comparable performances of FL with DL while achieving improved data privacy and security.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.ispartofIEEE Internet Computingen_US
dc.subjectComputational modeling , Training , Internet of Things , Servers , Federated learning , Systems architecture , Intrusion detection , Network intrusion detection , Data models , Ambient assisted living , Privacy , Smart homesen_US
dc.titleFederated Learning for Network Intrusion Detection in Ambient Assisted Living Environmentsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1109/mic.2023.3264700-
dc.identifier.urlhttp://xplorestaging.ieee.org/ielx7/4236/10184181/10092481.pdf?arnumber=10092481-
dc.identifier.volume27-
dc.identifier.issue4-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptFaculty of Electrical Engineering and Information Technologies-
crisitem.author.deptFaculty of Electrical Engineering and Information Technologies-
Appears in Collections:Faculty of Electrical Engineering and Information Technologies: Journal Articles
Прикажи едноставен запис

Page view(s)

54
checked on 4.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.