Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12188/30701
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Obradović, Milutin | en_US |
dc.contributor.author | Tuneski, Nikola | en_US |
dc.date.accessioned | 2024-06-19T09:48:03Z | - |
dc.date.available | 2024-06-19T09:48:03Z | - |
dc.date.issued | 2023-12-01 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/30701 | - |
dc.description.abstract | <jats:title>Abstract</jats:title> <jats:p>Let <jats:italic>S</jats:italic> denote the class of functions f which are analytic and univalent in the unit disk 𝔻 = {z : |z| < 1} and normalized with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_ausm-2023-0017_eq_001.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"> <m:mrow> <m:mtext>f</m:mtext> <m:mrow> <m:mo>(</m:mo> <m:mtext>z</m:mtext> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mtext>z</m:mtext> <m:mo>+</m:mo> <m:msubsup> <m:mo>∑</m:mo> <m:mrow> <m:mtext>n</m:mtext> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>∞</m:mo> </m:msubsup> <m:mrow> <m:msub> <m:mrow> <m:mi>α</m:mi> </m:mrow> <m:mtext>n</m:mtext> </m:msub> <m:msup> <m:mrow> <m:mtext>z</m:mtext> </m:mrow> <m:mtext>n</m:mtext> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:tex-math>{\rm{f}}\left( {\rm{z}} \right) = {\rm{z}} + \sum\nolimits_{{\rm{n = 2}}}^\infty {{\alpha _{\rm{n}}}{{\rm{z}}^{\rm{n}}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using a method based on Grusky coefficients we study two problems over the class <jats:italic>S</jats:italic>: estimate of the fourth logarithmic coefficient and upper bound of the coefficient difference |α<jats:sub>5</jats:sub>| − |α<jats:sub>4</jats:sub>|.</jats:p> | en_US |
dc.publisher | Universitatea Sapientia din municipiul Cluj-Napoca | en_US |
dc.relation.ispartof | Acta Universitatis Sapientiae, Mathematica | en_US |
dc.title | Two applications of Grunsky coefficients in the theory of univalent functions | en_US |
dc.identifier.doi | 10.2478/ausm-2023-0017 | - |
dc.identifier.url | https://www.sciendo.com/pdf/10.2478/ausm-2023-0017 | - |
dc.identifier.volume | 15 | - |
dc.identifier.issue | 2 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.dept | Faculty of Mechanical Engineering | - |
Appears in Collections: | Faculty of Mechanical Engineering: Journal Articles |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.