Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/30485
DC FieldValueLanguage
dc.contributor.authorMalijanska, Natashaen_US
dc.contributor.authorSanja Atanasovaen_US
dc.contributor.authorGjorgji Gjorgjieven_US
dc.contributor.authorIgor Peshevskien_US
dc.contributor.authorDaniel Velinoven_US
dc.date.accessioned2024-06-07T10:59:31Z-
dc.date.available2024-06-07T10:59:31Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/30485-
dc.description.abstractReal estate mass valuation models of a market value have a tendency to generate real estate property values as close as to the real market values. Property valuation theory, as one of the primary factors influencing property value, considers location. The main statistical tool used for modelling in this investigation is geographically weighted regression. More precisely, the paper is striving to establish a mass valuation real estate property model considering the implementation of spatial data as a significant factor in determining the market value of condominiums in Skopje.en_US
dc.language.isoenen_US
dc.publisherUnion od Mathematicians of Macedonia – ARMAGANKAen_US
dc.titleA geographically weighted regression approach in regional model for real estate mass valuationen_US
dc.typeProceeding articleen_US
dc.relation.conferenceII Congress of Differential Equations, Mathematical Analysis and Applications CODEMA 2022 X Seminar of Differential Equations and Analysis, September 25 - September 28, 2022.en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:Faculty of Civil Engineering: Conference papers
Прикажи едноставен запис

Page view(s)

35
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.