Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис:
http://hdl.handle.net/20.500.12188/30421
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Trpchevska, Marija | en_US |
dc.contributor.author | Dedinec, Aleksandra | en_US |
dc.date.accessioned | 2024-06-05T13:14:39Z | - |
dc.date.available | 2024-06-05T13:14:39Z | - |
dc.date.issued | 2023-05-22 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12188/30421 | - |
dc.description.abstract | The paper aims to assist in a more accurate classification of crimes provided by North Macedonia’s Ministry of Internal Affairs using machine learning techniques. By means of natural language processing, data is transformed into a format suitable for term frequency-inverse document frequency (TF-IDF) vectorization. Bayesian and Support Vector Machine models are utilized and evaluated. The results show non-negligible improvement toward a successful classification of crimes, confirming the beneficial nature of machine learning techniques towards such tasks. | en_US |
dc.publisher | IEEE | en_US |
dc.subject | Natural language processing , term frequency-inverse document frequency , TF-IDF , classification , multinomial Naive Bayes , Support Vector Machine | en_US |
dc.title | Classification of Crimes Using Machine Learning Techniques for National Crime Data | en_US |
dc.type | Proceedings | en_US |
dc.relation.conference | 2023 46th MIPRO ICT and Electronics Convention (MIPRO) | en_US |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Appears in Collections: | Faculty of Computer Science and Engineering: Conference papers |
Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.