Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/30421
DC FieldValueLanguage
dc.contributor.authorTrpchevska, Marijaen_US
dc.contributor.authorDedinec, Aleksandraen_US
dc.date.accessioned2024-06-05T13:14:39Z-
dc.date.available2024-06-05T13:14:39Z-
dc.date.issued2023-05-22-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/30421-
dc.description.abstractThe paper aims to assist in a more accurate classification of crimes provided by North Macedonia’s Ministry of Internal Affairs using machine learning techniques. By means of natural language processing, data is transformed into a format suitable for term frequency-inverse document frequency (TF-IDF) vectorization. Bayesian and Support Vector Machine models are utilized and evaluated. The results show non-negligible improvement toward a successful classification of crimes, confirming the beneficial nature of machine learning techniques towards such tasks.en_US
dc.publisherIEEEen_US
dc.subjectNatural language processing , term frequency-inverse document frequency , TF-IDF , classification , multinomial Naive Bayes , Support Vector Machineen_US
dc.titleClassification of Crimes Using Machine Learning Techniques for National Crime Dataen_US
dc.typeProceedingsen_US
dc.relation.conference2023 46th MIPRO ICT and Electronics Convention (MIPRO)en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Прикажи едноставен запис

Page view(s)

42
checked on 3.5.2025

Google ScholarTM

Проверете


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.