Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/29962
DC FieldValueLanguage
dc.contributor.authorDuarte, Rui Pedroen_US
dc.contributor.authorMarinho, Francisco Alexandreen_US
dc.contributor.authorBastos, Eduarda Sofiaen_US
dc.contributor.authorPinto, Rui Joãoen_US
dc.contributor.authorSilva, Pedro Miguelen_US
dc.contributor.authorFermino, Aliceen_US
dc.contributor.authorDenysyuk, Hanna Vitalyvnaen_US
dc.contributor.authorGouveia, António Jorgeen_US
dc.contributor.authorGonçalves, Norberto Jorgeen_US
dc.contributor.authorCoelho, Paulo Jorgeen_US
dc.contributor.authorZdravevski, Eftimen_US
dc.contributor.authorLameski, Petreen_US
dc.contributor.authorTripunoski, Tonien_US
dc.contributor.authorGarcia, Nuno Men_US
dc.contributor.authorPires, Ivan Miguelen_US
dc.date.accessioned2024-04-11T11:31:32Z-
dc.date.available2024-04-11T11:31:32Z-
dc.date.issued2023-02-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/29962-
dc.description[This corrects the article DOI: 10.1016/j.dib.2022.108874.] https://www.sciencedirect.com/science/article/pii/S2352340923001129?via%3Dihuben_US
dc.description.abstractIt is increasingly possible to acquire Electrocardiographic data with featured low-cost devices. The proposed dataset will help map different signals for various diseases related to Electrocardiography data. The dataset presented in this paper is related to the acquisition of electrocardiography data during the standing up and seated positions. The data was collected from 219 individuals (112 men, 106 women, and one other) in different environments, but they are in the Covilhã municipality. The dataset includes the 219 recordings and corresponds to the sensors' recordings of a 30 s sitting and a 30 s standing test, which checks to approximately 1 min for each one. This dataset includes 3.7 h (approximately) of recordings for further analysis with data processing techniques and machine learning methods. It will be helpful for the complementary creation of a robust method for identifying the characteristics of individuals related to Electrocardiography signals.en_US
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.relation.ispartofData in briefen_US
dc.subjectElectrocardiography signalsen_US
dc.subjectDaily activitiesen_US
dc.subjectDiseasesen_US
dc.subjectSeateden_US
dc.subjectStand upen_US
dc.titleExtraction of notable points from ECG data: A description of a dataset related to 30-s seated and 30-s stand upen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dib.2022.108874-
dc.identifier.urlhttps://api.elsevier.com/content/article/PII:S2352340922010770?httpAccept=text/xml-
dc.identifier.urlhttps://api.elsevier.com/content/article/PII:S2352340922010770?httpAccept=text/plain-
dc.identifier.volume46-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Medicine-
crisitem.author.deptFaculty of Computer Science and Engineering-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Medicine: Journal Articles
Files in This Item:
File Опис SizeFormat 
1-s2.0-S2352340923001129-main.pdf201.26 kBAdobe PDFView/Open
Прикажи едноставен запис

Page view(s)

67
checked on 6.11.2024

Download(s)

6
checked on 6.11.2024

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.