Ве молиме користете го овој идентификатор да го цитирате или поврзете овој запис: http://hdl.handle.net/20.500.12188/28367
DC FieldValueLanguage
dc.contributor.authorDebrouwere, Andreasen_US
dc.contributor.authorPrangoski, Bojanen_US
dc.date.accessioned2023-11-03T14:55:34Z-
dc.date.available2023-11-03T14:55:34Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/28367-
dc.description.abstract<jats:p> We obtain Gabor frame characterizations of modulation spaces defined via a broad class of translation-modulation invariant Banach spaces of distributions. We show that these spaces admit an atomic decomposition through Gabor expansions and that they are characterized by summability properties of their Gabor coefficients. Furthermore, we construct a large space of admissible windows. This generalizes and unifies several fundamental results for the classical modulation spaces [Formula: see text] and the amalgam spaces [Formula: see text]. Due to the absence of solidity assumptions on the Banach spaces defining these generalized modulation spaces, the methods used for the spaces [Formula: see text] (or, more generally, in coorbit space theory) fail in our setting and we develop here a new approach based on the twisted convolution. </jats:p>en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientific Pub Co Pte Ltden_US
dc.relation.ispartofAnalysis and Applicationsen_US
dc.titleGabor frame characterizations of generalized modulation spacesen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1142/s0219530522500178-
dc.identifier.urlhttps://www.worldscientific.com/doi/pdf/10.1142/S0219530522500178-
dc.identifier.volume21-
dc.identifier.issue03-
dc.identifier.fpage547-
dc.identifier.lpage596-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFaculty of Mechanical Engineering-
Appears in Collections:Faculty of Mechanical Engineering: Journal Articles
Прикажи едноставен запис

Page view(s)

53
checked on 4.5.2025

Google ScholarTM

Проверете

Altmetric


Записите во DSpace се заштитени со авторски права, со сите права задржани, освен ако не е поинаку наведено.