Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12188/27768
DC FieldValueLanguage
dc.contributor.authorJovanovska, Elenaen_US
dc.contributor.authorChorbev, Ivanen_US
dc.contributor.authorDavcev, Dancoen_US
dc.contributor.authorMitreski, Kostaen_US
dc.date.accessioned2023-09-06T09:04:45Z-
dc.date.available2023-09-06T09:04:45Z-
dc.date.issued2022-11-16-
dc.identifier.urihttp://hdl.handle.net/20.500.12188/27768-
dc.description.abstractSmart Agriculture is becoming more accepted by food industries, since they can see the difference in terms of quality of product, greater harvest, and lower cost expenses. Vine production has a great worldly role, so manufacturers are keen to experiment with new technologies that could improve their product. From a scientific perspective, we propose an integrated system for prediction of diseases in vineyards that provides services for data collection (from vineyard plantations), preprocessing, and integrated prediction of vineyard diseases using several models for prediction. Previous experiences showed that it is possible to develop a complete integrated system for prediction of diseases in viticulture and hence to provide a high efficient system for high quality vine production. Therefore, we will test the initial models when a decent set of data will be collected. The main contribution of this paper is comparing different methods based on experimental data from the prototype. This will allow us to build an integrated system for prediction of diseases in vineyards.en_US
dc.publisherIEEEen_US
dc.subjectInternet of Things (loT) , prediction models , vineyard diseases , machine learning , deep learningen_US
dc.titleIntegrated IoT System for Prediction of Diseases in the Vineyardsen_US
dc.typeProceeding articleen_US
dc.relation.conference2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFaculty of Computer Science and Engineering-
Appears in Collections:Faculty of Computer Science and Engineering: Conference papers
Show simple item record

Page view(s)

54
checked on May 4, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.